Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High efficiency cross-polarized wave filter for non-vacuum transmission

Li Rong-Feng Xue Xing-Tai Zhao Yan-Ying Geng Yi-Xing Lu Hai-Yang Yan Xue-Qing Chen Jia-Er

Citation:

High efficiency cross-polarized wave filter for non-vacuum transmission

Li Rong-Feng, Xue Xing-Tai, Zhao Yan-Ying, Geng Yi-Xing, Lu Hai-Yang, Yan Xue-Qing, Chen Jia-Er
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Development of high-peak power laser system encounters difficulties in producing the pulses with high temporal contrast. To increase the pulse temporal contrast ratio, a nonlinear filter based on crossed-polarized wave (XPW) generation is proposed. The XPW generation relies on a third-order nonlinear process occurring in a nonlinear medium, such as barium fluorite (BaF2) crystal. The XPW process is quite straightforward:a linearly polarized laser pulse is focused on BaF2 crystal positioned between two orthogonally polarizers, high power main pulses due to nonlinear polarization rotation can pass through the second polarizer, while low power unconverted pre-and post-pulses are filtered by the second polarizer. With the XPW technique, pulse contrast can be enhanced by several orders of magnitude. Furthermore, XPW spectrum can be broaden by a factor with respect to the initial spectrum. This efficient pulse cleaner presents many advantages and has proved to be a simple and reliable pulse filter operating in a double chirped pulse amplification system. Most of previous XPW experiments utilize short focal systems or work off focus due to an intensity limit in the crystal (BaF2). These drawbacks result in a lower conversion efficiency (lower than 10%) when using a single crystal. Dual crystal setup is capable of achieving efficiency more than 20%, yet the configuration restricts the crystal separation to a millimeter level. The use of long focus lens in the XPW device is capable of reaching higher efficiency, with BaF2 crystal positioned in the focal plane. Hence for milljoule pulses, the setup distance increases to tens of meters, resulting in a complicated system and cumbersome configuration. Considering these limitations, a compact, highly efficient and stable XPW generation using dual-lens system suitable for non-vacuum transmission is presented. The measured nonlinear accumulated phase shows little deterioration of pulse quality. With a compact dual lens system, we realize an excellent XPW conversion of above 22% (internal efficiency of 30%) with using double BaF2 crystals, while a femtosecond laser pulse can experience a spectrum broadening up to a factor of 1.78. The dual-lens configuration overcomes the crystal separation limit, and conversion efficiency exceeds 20% for a crystal separation from 13 cm to 22 cm, which is conducible to flexibility and robustness. The stability for the setup to generate shorter pulses with very high contrast or compensate for spectral gain narrowing in the preamplifier is ensured due to the dual-lens focusing system.
      Corresponding author: Zhao Yan-Ying, zhaoyanying@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11504009) and the National Grand Instrument Project,China (Grant No.2012YQ030142).
    [1]

    Petrov G I, Albert O, Etchepare J, Saltiel S M 2001 Opt. Lett. 26 355

    [2]

    Minkovski N, Saltiel S M, Petrov G I, Albert O, Etchepare J 2002 Opt. Lett. 27 2025

    [3]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Augé-Rochereau F, Chériaux G, and Etchepare J 2005 Opt. Lett. 30 920

    [4]

    Jullien A, Rousseau J P, Mercier B, Antonucci L, Albert O, Chériaux G, Kourtev S, Minkovski N, Saltiel S M 2008 Opt. Lett. 33 2353

    [5]

    Antonucci L, Rousseau J P, Jullien A, Mercier B, Laude V, Cheriaux G 2009 Opt. Commun. 282 1374

    [6]

    Qin S, Wang Z H, Yang S S, Shen Z W, Dong Q L, Wei Z Y 2017 Chin. Phys. Lett. 34 024205

    [7]

    Xu Y, Leng Y X, Guo X Y, Zou X, Li Y Y, Lu X M, Wang C, Liu Y Q, Liang X Y, Li R X 2014 Opt. Commun. 313 175

    [8]

    Li Y Y, Guo X Y, Zou X, Xu Y, Leng Y X 2014 Opt. Laser Technol. 57 165

    [9]

    Cotel A, Jullien A, Forget N, Albert O, Chériaux G, Le Blanc C 2006 Appl. Phys. B 83 7

    [10]

    Chu Y X, Liang X Y, Yu L H, Xu Y, Xu L, Ma L, Lu X M, Liu Y Q, Leng Y X, Li R X, Xu Z Z 2013 Opt. Express 21 29231

    [11]

    Geng Y X, Li R F, Zhao Y Y, Wang D H, Lu H Y, Yan X Q 2017 Acta Phys. Sin. 66 040601 (in Chinese) [耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆 2017 66 040601]

    [12]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2005 J. Opt. Soc. Am. B 22 2635

    [13]

    Ramirez L P, Papadopoulos D, Hanna M, Pellegrina A, Friebel F, Georges P, Druon F 2013 J. Opt. Soc. Am. B 30 2607

    [14]

    Jullien A, Kourtev S, Albert O, Chériaux G, Etchepare J, Minkovski N, Saltiel S M 2006 Appl. Phys. B 84 409

    [15]

    Ricci A, Jullien A, Rousseau J P, Liu Y, Houard A, Ramirez P, Papadopoulos D, Pellegrina A, Georges P, Druon F, Forget N, Lopez-Martens R 2013 Rev. Sci. Instrum. 84 043106

    [16]

    Canova L, Kourtev S, Minkovski N, Lopez-Martens R, Albert O, Saltiel S M 2008 Opt. Lett. 33 2299

    [17]

    Liu C, Wang Z H, Li W C, Liu F, Wei Z Y 2010 Acta Phys. Sin. 59 7036 (in Chinese) [刘成, 王兆华, 李伟昌, 刘峰, 魏志义 2010 59 7036]

    [18]

    Wang J Z, Huang Y S, Xu Y, Li Y Y, Lu X M, Leng Y X 2012 Acta Phys. Sin. 61 94214 (in Chinese) [王建州, 黄延穗, 许毅, 李妍妍, 陆效明, 冷雨欣 2012 61 94214]

    [19]

    Konoplev O A, Meyerhofter D D 1998 IEEE J. Sel. Top. Quantum Electron. 4 459

    [20]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2006 Opt. Express 14 2760

    [21]

    Ricci A, Jullien A, Forget N, Crozatier V, Tournois P, Lopezmartens R 2012 Opt. Lett. 37 1196

    [22]

    Minkovski N, Petrov G I, Saltiel S M, Albert O, Etchepare J 2004 J. Opt. Soc. Am. B 21 160

    [23]

    Jullien A, Durfee C G, Trisorio A, Canova L, Rousseau J P, Mercier B, Antonucci L, Chériaux G, Albert O, Lopez-Martens R 2009 Appl. Phys. B 96 293

  • [1]

    Petrov G I, Albert O, Etchepare J, Saltiel S M 2001 Opt. Lett. 26 355

    [2]

    Minkovski N, Saltiel S M, Petrov G I, Albert O, Etchepare J 2002 Opt. Lett. 27 2025

    [3]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Augé-Rochereau F, Chériaux G, and Etchepare J 2005 Opt. Lett. 30 920

    [4]

    Jullien A, Rousseau J P, Mercier B, Antonucci L, Albert O, Chériaux G, Kourtev S, Minkovski N, Saltiel S M 2008 Opt. Lett. 33 2353

    [5]

    Antonucci L, Rousseau J P, Jullien A, Mercier B, Laude V, Cheriaux G 2009 Opt. Commun. 282 1374

    [6]

    Qin S, Wang Z H, Yang S S, Shen Z W, Dong Q L, Wei Z Y 2017 Chin. Phys. Lett. 34 024205

    [7]

    Xu Y, Leng Y X, Guo X Y, Zou X, Li Y Y, Lu X M, Wang C, Liu Y Q, Liang X Y, Li R X 2014 Opt. Commun. 313 175

    [8]

    Li Y Y, Guo X Y, Zou X, Xu Y, Leng Y X 2014 Opt. Laser Technol. 57 165

    [9]

    Cotel A, Jullien A, Forget N, Albert O, Chériaux G, Le Blanc C 2006 Appl. Phys. B 83 7

    [10]

    Chu Y X, Liang X Y, Yu L H, Xu Y, Xu L, Ma L, Lu X M, Liu Y Q, Leng Y X, Li R X, Xu Z Z 2013 Opt. Express 21 29231

    [11]

    Geng Y X, Li R F, Zhao Y Y, Wang D H, Lu H Y, Yan X Q 2017 Acta Phys. Sin. 66 040601 (in Chinese) [耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆 2017 66 040601]

    [12]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2005 J. Opt. Soc. Am. B 22 2635

    [13]

    Ramirez L P, Papadopoulos D, Hanna M, Pellegrina A, Friebel F, Georges P, Druon F 2013 J. Opt. Soc. Am. B 30 2607

    [14]

    Jullien A, Kourtev S, Albert O, Chériaux G, Etchepare J, Minkovski N, Saltiel S M 2006 Appl. Phys. B 84 409

    [15]

    Ricci A, Jullien A, Rousseau J P, Liu Y, Houard A, Ramirez P, Papadopoulos D, Pellegrina A, Georges P, Druon F, Forget N, Lopez-Martens R 2013 Rev. Sci. Instrum. 84 043106

    [16]

    Canova L, Kourtev S, Minkovski N, Lopez-Martens R, Albert O, Saltiel S M 2008 Opt. Lett. 33 2299

    [17]

    Liu C, Wang Z H, Li W C, Liu F, Wei Z Y 2010 Acta Phys. Sin. 59 7036 (in Chinese) [刘成, 王兆华, 李伟昌, 刘峰, 魏志义 2010 59 7036]

    [18]

    Wang J Z, Huang Y S, Xu Y, Li Y Y, Lu X M, Leng Y X 2012 Acta Phys. Sin. 61 94214 (in Chinese) [王建州, 黄延穗, 许毅, 李妍妍, 陆效明, 冷雨欣 2012 61 94214]

    [19]

    Konoplev O A, Meyerhofter D D 1998 IEEE J. Sel. Top. Quantum Electron. 4 459

    [20]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2006 Opt. Express 14 2760

    [21]

    Ricci A, Jullien A, Forget N, Crozatier V, Tournois P, Lopezmartens R 2012 Opt. Lett. 37 1196

    [22]

    Minkovski N, Petrov G I, Saltiel S M, Albert O, Etchepare J 2004 J. Opt. Soc. Am. B 21 160

    [23]

    Jullien A, Durfee C G, Trisorio A, Canova L, Rousseau J P, Mercier B, Antonucci L, Chériaux G, Albert O, Lopez-Martens R 2009 Appl. Phys. B 96 293

  • [1] Li Hao, Pang Yong-Qiang, Qu Bing-Yue, Zheng Jiang-Shan, Xu Zhuo. Optical transparent metasurface lenses and their wireless communication efficiency enhancement. Acta Physica Sinica, 2024, 73(14): 144104. doi: 10.7498/aps.73.20240464
    [2] He Tong-Tong, Liu Zi-Chao, Li Ying-Bin, Huang Cheng. Manipulating nonsequential double ionization of atoms by parallel polarized three-color laser fields. Acta Physica Sinica, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [3] Ge Zhen-Jie, Su Xu, Bai Li-Hua. Nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [4] Yang Nan-Nan, Wang Shang-Min, Zhang Jia-Liang, Wen Xiao-Qiong, Zhao Kai. Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters. Acta Physica Sinica, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [5] Li Yu-Chen, Chen Hang-Yu, Song Jian-Jun. Ge Schottky diode for improving energy conversion efficiency of the receiver of microwave wireless power transfer. Acta Physica Sinica, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [6] Peng Wan-Jing, Liu Peng. Continuously spacing-tunable dual-wavelength erbium-doped fiber laser based on polarization-dependent in-line multimode-single-mode-multimode fiber filter. Acta Physica Sinica, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [7] Yan Ming-Yue, Zhang Xu, Liu Chen-Hao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Energy conversion efficiency of feedback pulsing ratchet. Acta Physica Sinica, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [8] Liu Li-Juan, Kong Xiao-Bo, Liu Yong-Gang, Xuan Li. Enhancement of conversion efficiency for an organic semiconductor laser based on a holographic polymer dispersed liquid crystal. Acta Physica Sinica, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [9] Geng Yi-Xing, Li Rong-Feng, Zhao Yan-Ying, Wang Da-Hui, Lu Hai-Yang, Yan Xue-Qing. Influences of quadratic spectral phase on characteristics of two crystal cross-polarized generation with femtosecond pulses. Acta Physica Sinica, 2017, 66(4): 040601. doi: 10.7498/aps.66.040601
    [10] Zhao Xiu-Niao, Sun Jian-An, Dou Fu-Quan. Effect of external field shape on the ultracold atom-polymer molecule conversion efficiency. Acta Physica Sinica, 2014, 63(22): 220302. doi: 10.7498/aps.63.220302
    [11] Yu Ben-Hai, Li Ying-Bin. Laser intensity dependence of nonsequential double ionization of argon atoms by elliptically polarized laser pulses. Acta Physica Sinica, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [12] Luo Xing, Zhou Xin-Xing, Luo Hai-Lu, Wen Shuang-Chun. Cross-polarizaton characteristics in spin Hall effect of light. Acta Physica Sinica, 2012, 61(19): 194202. doi: 10.7498/aps.61.194202
    [13] Yu Ben-Hai, Li Ying-Bin, Tang Qing-Bin. The nonsequential double ionization of argon atoms with elliptically polarized laser pulse. Acta Physica Sinica, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [14] Li Guan-Qiang, Peng Ping, Cao Zhen-Zhou, Xue Ju-Kui. Adiabatic conversion from ultracold atoms to heteronuclear tetrameric molecule A3B. Acta Physica Sinica, 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [15] Liu Cheng, Wang Zhao-Hua, Li Wei-Chang, Liu Feng, Wei Zhi-Yi. Enhancement of contrast ratio in chirped pulse amplified laser system by cross-polarized wave generation. Acta Physica Sinica, 2010, 59(10): 7036-7040. doi: 10.7498/aps.59.7036
    [16] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Zhang Qing-Bin, Li Qian-Guang, Lu Pei-Xiang. Generating isolated broadband attosecond pulses with stable pulse duration in a non-colinear polarized two-color field. Acta Physica Sinica, 2009, 58(7): 4914-4919. doi: 10.7498/aps.58.4914
    [17] Zhang Chun-Li, Qi Yue-Ying, Liu Xue-Shen, Ding Pei-Zhu. Numerical study of the enhancement of efficiency of high-order harmonic generation in two-color laser field. Acta Physica Sinica, 2009, 58(5): 3078-3083. doi: 10.7498/aps.58.3078
    [18] Zhang Chun-Li, Qi Yue-Ying, Liu Xue-Shen, Ding Pei-Zhu. The enhancement of efficiency of high-order harmonic generation in two-color laser field. Acta Physica Sinica, 2007, 56(2): 774-780. doi: 10.7498/aps.56.774
    [19] Feng Xun-Li, Xu Zhi-Zhan, Xia Yu-Xing. . Acta Physica Sinica, 2000, 49(2): 235-240. doi: 10.7498/aps.49.235
    [20] HE LIN-SHENG, FENG XUN-LI, WU SHI-XIONG, ZHANG ZHI-MING, XIA YU-XING. NON-DEGENERATE TWO-PHOTON FLUORESCENCE SPECTRUM FOR TWO-LEVEL ATOM IN SQUEEZED VACUUM. Acta Physica Sinica, 1998, 47(2): 219-231. doi: 10.7498/aps.47.219
Metrics
  • Abstract views:  6352
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2017
  • Accepted Date:  21 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map