搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合光瞳滤波的超表面透镜设计

钟润晖 凌进中 李洋洋 杨旭东 王晓蕊

引用本文:
Citation:

融合光瞳滤波的超表面透镜设计

钟润晖, 凌进中, 李洋洋, 杨旭东, 王晓蕊

Design of meta-surface lens integrated with pupil filter

ZHONG Runhui, LING Jinzhong, LI Yangyang, YANG Xudong, WANG Xiaorui
PDF
HTML
导出引用
  • 超表面透镜是一种通过调制表面微单元结构参数来实现对光波相位、振幅和偏振的精确调控的微型平面透镜. 相较于普通透镜, 具有尺寸小、重量轻、集成度高等优点, 是光子芯片的核心器件. 为突破衍射极限, 进一步提升超表面透镜的聚焦性能和成像分辨率, 需结合现有的光场调控技术, 对入射光场进行多维信息调控. 参考光瞳滤波器的超分辨成像原理, 设计了一种融合型超表面透镜, 可同时实现透镜聚焦和光瞳滤波器的功能, 从而获得超越衍射极限的聚焦光斑. 通过参数优化, 最终实现了半高全宽为323.4 nm(~0.51λ)的焦斑, 较未加光瞳滤波器的超表面透镜(半高全宽为376 nm)性能提升了近15%. 本文设计的融合型超表面透镜展示了全面光场调控对其光学性能的提升, 在未来有望代替传统透镜, 并在纳米显微成像、纳米光刻、虚拟现实以及3D显示等领域发挥重要作用.
    Metasurface lenses are miniature flat lenses that can precisely control the phase, amplitude, and polarization of incident light by modulating the parameters of each unit on the substrate. Compared with conventional optical lenses, they have the advantages of small size, light weight, and high integration, and are the core components of photonic chips. Currently, the hot topics for metasurface lens are broadband and achromatic devices, and there is still less attention paid to the resolution improvement. To break through the diffraction limit and further improve the focusing performance and imaging resolution of metasurface lenses, we use unit cells to perform multi-dimensional modulation of the incident light field. Specifically, in this paper, we combine phase modulation of metasurface lens with a pupil filtering, which has been widely applied to traditional microscopy imaging and adaptive optics and has demonstrated powerful resolution enhancement effects. The integrating of these two technologies will continue to improve the imaging performance of metasurface lenses and thus expanding their application fields.In this work, we firstly design a single-cell super-surface lens composed of a silicon nanofin array and a silica substrate as a benchmark for comparing the performance of integrated super-surface lens. The lens achieves an ideal focal spot for incident light at 633 nm, resulting in a full width at half maximum (FWHM) of 376.0 nm. Then, a three-zone phase modulating pupil filter is proposed and designed with the same aperture of metasurface lens, which has a phase jump of 0-π-0 from the inside to the outside of the aperture. From the simulation results, the main lobe size of the focal spot is compressed obviously. In the optimization, its structural parameters are scanned for the best performance, and an optimal set of structural parameters is selected and used in the integrated metasurface lens. Finally, the integrated metasurface lens is designed by combining the metasurface lens with a three-zone phase modulating pupil filter, and the FWHM of its focal spot is compressed to 323.4 nm (≈ 0.51λ), which is not only 15% smaller than original metasurface lens’s FWHM of 376.0 nm, but also much smaller than the diffraction limit of 0.61λ/NA (when NA = 0.9, it is approximately 429.0 nm). This result preliminarily demonstrates the super-resolution performance of the integrated super-surface lens. With the comprehensive regulation of multi-dimensional information, such as amplitude, polarization, and vortex, the integrated super-surface optical lens will achieve more excellent super-resolution focusing and imaging performance, and will also be widely used in the fields of super-resolution imaging, virtual reality, and three-dimensional optical display, due to its characteristics of high resolution, high integration, and high miniaturization.
  • 图 1  超表面透镜的微单元结构参数(a)和微单元的周期性排布(b)

    Fig. 1.  Metasurface lens’ microcell structure parameters (a) and the periodic arrangement of microcells (b).

    图 2  相位随旋转角的变化曲线

    Fig. 2.  Phase changes with the rotation angle of microcell.

    图 3  (a) x-y平面内焦斑的光强分布; (b) y-z平面成像内焦斑的光强分布; (c) x-y平面内的相位分布; (d) y-z平面内的相位分布

    Fig. 3.  (a) Light intensity distributions in x-y plane for the focal spot; (b) light intensity distributions in y-z plane for the focal spot; (c) phase distributions in x-y plane for the focal spot; (d) phase distributions in y-z plane for the focal spot.

    图 4  三区相位型光瞳滤波器的结构示意图(a)和使用光路(b)

    Fig. 4.  Structural diagram (a) and optical path (b) of the three-zone phase pupil filter.

    图 5  归一化光强分布对比 (a) r1 = 0.33, r2 = 0.67, r3 = 1; (b) r1 = 0.2, r2 = 0.8, r3 = 1; (c) r1 = 0.1, r2 = 0.9, r3 = 1

    Fig. 5.  Comparison of normalized light intensity distribution: (a) r1 = 0.33, r2 = 0.67, r3 = 1; (b) r1 = 0.2, r2 = 0.8, r3 = 1; (c) r1 = 0.1, r2 = 0.9, r3 = 1.

    图 6  融合型超表面透镜的结构示意图

    Fig. 6.  Structural diagram of the integrated metasurface lens.

    图 7  (a)单胞元超表面透镜y-z平面相位分布; (b)融合型超表面透镜y-z平面相位分布

    Fig. 7.  (a) Single cell metasurface lens y-z plane phase distribution; (b) integrated type metasurface lens y-z plane phase distribution.

    图 8  融合型超表面透镜焦斑处的光强分布 (a) 透镜焦平面上; (b) y-z平面

    Fig. 8.  Light intensity distribution at the focal spot of integrated metasurface lens: (a) Focal plane image; (b) y-z plane.

    图 9  两种超表面透镜焦斑中心光强分布曲线对比

    Fig. 9.  Comparison of normalized light intensity distributions of two metasurface lenses around the focal spot centrals.

    Baidu
  • [1]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J, Qu S B 2013 J. Appl. Phys. 114 074508Google Scholar

    [2]

    Lin D M, Fan P Y, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar

    [3]

    West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar

    [4]

    Li S H, Li J S 2019 Aip Adv. 9 035146Google Scholar

    [5]

    Marlek S C, Ee H S, Agarwal R 2017 Nano Lett. 17 3641Google Scholar

    [6]

    Cai B, Wu L, Zhu X W, Cheng Z Z, Cheng Y Z 2024 Res. Phys. 58 107509

    [7]

    Li Y L, Xu J F, Liu, F H, Xu L Z, Fang B, Li, C X 2024 Phys. Scripta 99 075536Google Scholar

    [8]

    Khorasaninejad M, Capasso F 2017 Science 358 6367

    [9]

    Hu T, Xia R, Wang S C, Yang Z Y, Zhao M 2024 J. Phys. D: Appl. Phys. 57 355103Google Scholar

    [10]

    徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东 2023 72 014208Google Scholar

    Xu P, Li X C, Xiao Y F, Yang T, Zhang X L, Huang H X, Wang M Y, Yuan X, Xu H D 2023 Acta Phys. Sin. 72 014208Google Scholar

    [11]

    Zhang Q S, Guo D, Shen C S, Chen Z F, Bai N F 2024 Phys. Scripta 99 015516Google Scholar

    [12]

    di Francia G T 1952 Il Nuovo Cimento 9 426Google Scholar

    [13]

    Luo Z Y, Kuebler S M 2014 Opt. Commun. 315 176Google Scholar

    [14]

    Chakraborty S, Bera S C, Chakraborty A K Optik 122 549

    [15]

    王吉明, 赫崇军, 刘友文, 杨凤, 田威, 吴彤 2016 65 044202Google Scholar

    Wang J M, He C J, Liu Y W, Yang F, Tian Wei, Wu T 2016 Acta Phys. Sin. 65 044202Google Scholar

    [16]

    Liu S, Qi S X, Li Y K, Wei B Y, Li P, Zhao L 2023 Light Sci. Appl. 11 219

    [17]

    丁洪萍, 李庆辉, 邹文艺 2004 光学学报 24 1177Google Scholar

    Ding H P, Li Q H, Zou W Y 2004 Acta Opt. Sin. 24 1177Google Scholar

    [18]

    Toshiyuki H, Katsuhiro H, Seitaro M 2019 Denki Kagaku oyobi Kogyo Butsuri Kagaku 63 536

    [19]

    赵丽娜 2018 博士学位论文 (成都: 电子科技大学)

    Zhao L N 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [20]

    刘涛 2013 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu T 2013 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [21]

    陈俊林, 莫德锋, 蒋梦蝶, 朱海勇 2024 中国激光 51 1310001Google Scholar

    Chen J L, Mo D F, Jiang M D, Zhu H Y 2024 Chin. J. Lasers 51 1310001Google Scholar

  • [1] 杨浩智, 聂梦娇, 马光鹏, 曹慧群, 林丹樱, 屈军乐, 于斌. 基于数字微镜器件的快速超分辨晶格结构光照明显微研究.  , doi: 10.7498/aps.73.20240216
    [2] 凌进中, 郭金坤, 王昱程, 刘鑫, 王晓蕊. 基于倏逝波照明的空间移频超分辨成像技术研究.  , doi: 10.7498/aps.72.20230934
    [3] 葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌. 平场复用多焦点结构光照明超分辨显微成像.  , doi: 10.7498/aps.71.20211712
    [4] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究.  , doi: 10.7498/aps.70.20211712
    [5] 张佳, SamantaSoham, 王佳林, 王璐玮, 杨志刚, 严伟, 屈军乐. 一种用于线粒体受激辐射损耗超分辨成像的新型探针.  , doi: 10.7498/aps.69.20200171
    [6] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展.  , doi: 10.7498/aps.68.20190850
    [7] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像.  , doi: 10.7498/aps.67.20172608
    [8] 刘雄波, 林丹樱, 吴茜茜, 严伟, 罗腾, 杨志刚, 屈军乐. 荧光寿命显微成像技术及应用的最新研究进展.  , doi: 10.7498/aps.67.20180320
    [9] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾.  , doi: 10.7498/aps.66.144209
    [10] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展.  , doi: 10.7498/aps.66.148701
    [11] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展.  , doi: 10.7498/aps.66.148703
    [12] 王吉明, 赫崇君, 刘友文, 杨凤, 田威, 吴彤. 基于可调谐复振幅滤波器的超长焦深矢量光场.  , doi: 10.7498/aps.65.044202
    [13] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法.  , doi: 10.7498/aps.65.233601
    [14] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , doi: 10.7498/aps.63.224201
    [15] 李恒, 于斌, 陈丹妮, 牛憨笨. 高效双螺旋点扩展函数相位片的设计与实验研究.  , doi: 10.7498/aps.62.124201
    [16] 赵维谦, 唐芳, 邱丽荣, 刘大礼. 轴对称矢量光束聚焦特性研究现状及其应用.  , doi: 10.7498/aps.62.054201
    [17] 梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚. 基于多层膜结构的亚波长光栅研究.  , doi: 10.7498/aps.61.104203
    [18] 王伟, 周常河, 余俊杰. 三环位相型光瞳滤波器的横向超分辨与轴向焦深扩展.  , doi: 10.7498/aps.60.024201
    [19] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深.  , doi: 10.7498/aps.57.194
    [20] 刘 力, 邓小强, 王桂英, 徐至展. 改善共焦系统轴向分辨率的位相型光瞳滤波器.  , doi: 10.7498/aps.50.48
计量
  • 文章访问数:  518
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-24
  • 修回日期:  2024-11-25
  • 上网日期:  2024-12-25

/

返回文章
返回
Baidu
map