Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time-reversal-symmetry broken quantum spin Hall in Lieb lattice

Geng Hu Ji Qing-Shan Zhang Cun-Xi Wang Rui

Citation:

Time-reversal-symmetry broken quantum spin Hall in Lieb lattice

Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the time-reversal (TR) symmetry broken quantum spin Hall (QSH) in Lieb lattice is investigated in the presence of both Rashba spin-orbit coupling (SOC) and uniform exchange field. The Lieb lattice has a simple cubic symmetry, and it has three different sites in each unit cell. The most distinctive feature of this model is that it contains only one Dirac-cone in the first Brillouin zone, where the upper dispersive band and the lower dispersive band touch the middle zero-energy band at M point and form a cone-like dispersion. The intrinsic SOC is essentially needed to open the full energy gap in the bulk. When the intrinsic SOC is nonzero, all the band structures are separated everywhere in the Brillouin zone and can be characterized by some topological invariants. The exact QSH first put forward by Kane and Mele in 2005 is characterized by the z2 number. The protection from the TR symmetry ensures the gapless crossing in the surface state in the bulk gap. In our model, the presence of the exchange field breaks the TR symmetry, which results in opening a small gap in the crossing point and the z2 topological order is not suitable for the system. This kind of state is a TR symmetry broken QSH, which is characterized by the spin Chern numbers. The spin Chern numbers have a much wider scope of application than z2 index. It is suitable for both TR symmetry system and the TR symmetry broken system. For Lieb lattice ribbons, the spin polarization and the wave-function distributions are obtained numerically. There exists a weak scattering between the counter-propagating states in the TR symmetry broken QSH, and the spin transport along the boundary with a low dissipation replaces the dissipationless spin current in a TR symmetry system. In experiment, such a system can be realized by the two-dimensional Fermi gases in optical lattice with Lieb symmetry. The above conclusions are expected to give theoretical guidance in the spin device and the quantum information.
      Corresponding author: Wang Rui, wangrui@zjou.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 11304281, 10547001) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13D060002).
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559

    [3]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [4]

    Zhang H J, Xu Y, Wang J, Chang K, Zhang S C 2014 Phys. Rev. Lett. 112 216803

    [5]

    Miao M S, Yan Q, van de Wall C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [6]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [7]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [8]

    Qi X L, Zhang S C 2010 Physics Today 63 33

    [9]

    Li Z J, Li Q, Chen Z G, Li H B, Fang Y 2014 Chin. Phys. B 23 028102

    [10]

    Thouless D J, Kohmoto M, Nightingale M P, Den Nijs M 1982 Phys. Rev. Lett. 49 405

    [11]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [12]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [13]

    Konig M, Wiedmann S, Brune C, Roth A, Buthmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [14]

    Sheng D N, Weng Z Y, Sheng L, Haldane F D M 2006 Phys. Rev. Lett. 97 036808

    [15]

    Yang Y Y, Xu Z, Sheng L, Wang B G, Xing D Y, Sheng D N 2011 Phys. Rev. Lett. 107 066602

    [16]

    Pradan E 2009 Phys. Rev. B 80 125327

    [17]

    Qiao Z H, Yang S A, Feng W X, Tse W K, Ding J, Yao Y G, Wang J, Niu Q 2010 Phys. Rev. B 82 161414

    [18]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [19]

    Onoda M, Nagaosa N 2003 Phys. Rev. Lett. 90 206601

    [20]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802

    [21]

    Raghu S, Chung S B, Qi X L, Zhang S C 2010 Phys. Rev. Lett. 104 116401

    [22]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61

    [23]

    Wu C 2008 Phys. Rev. Lett. 101 186807

    [24]

    Guo H M, Franz M 2009 Phys. Rev. B 80 113102

    [25]

    Zhang Z Y 2011 J. Phys. Condens. Matter 23 365801

    [26]

    Ishizuka H, Motome Y 2013 Phys. Rev. B 87 081105

    [27]

    Kargarian M, Fiete G A 2010 Phys. Rev. B 82 085106

    [28]

    Chen W C, Liu R, Wang Y F, Gong C D 2012 Phys. Rev. B 86 085311

    [29]

    Ohgushi K, Murakami S, Nagaosa N 2000 Phys. Rev. B 62 R6065

    [30]

    Wang Z, Zhang P 2008 Phys. Rev. B 77 125119

    [31]

    Shen R, Shao L B, Wang B, Xing D Y 2010 Phys. Rev. B 81 041410

    [32]

    Beugeling W, Everts J C, Morais S C 2012 Phys. Rev. B 86 195129

    [33]

    Zhao A, Shen S Q 2012 Phys. Rev. B 85 085209

    [34]

    Weeks C, Franz M 2010 Phys. Rev. B 82 085310

    [35]

    Sun K, Fradkin E 2008 Phys. Rev. B 78 245122

    [36]

    He Y, Moore J, Varma C M 2012 Phys. Rev. B 85 155106

    [37]

    Stanescu T D, Galitski V, Vaishnav J Y, Clark C W, Das Sarma S 2009 Phys. Rev. A 79 053639

    [38]

    Zhu S L, Fu H, Wu C J, Zhang S C, Duan L M 2006 Phys. Rev. Lett. 97 240401

    [39]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885

    [40]

    Goldman N, Urban D F, Bercioux D 2011 Phys. Rev. A 83 063601

    [41]

    Gibertini M, Singha A, Pellegrini V, Polini M, Vignale G, Pinczuk A, Pfeiffer L N, West K W 2009 Phys. Rev. B 79 241406

    [42]

    Zhang C, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401

    [43]

    Chosh P, Sau J D, Tewari S, Das Sarma S 2010 Phys. Rev. B 82 184525

    [44]

    Temari S, Sau J D 2012 Phys. Rev. Lett. 109 150408

  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559

    [3]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [4]

    Zhang H J, Xu Y, Wang J, Chang K, Zhang S C 2014 Phys. Rev. Lett. 112 216803

    [5]

    Miao M S, Yan Q, van de Wall C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [6]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [7]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [8]

    Qi X L, Zhang S C 2010 Physics Today 63 33

    [9]

    Li Z J, Li Q, Chen Z G, Li H B, Fang Y 2014 Chin. Phys. B 23 028102

    [10]

    Thouless D J, Kohmoto M, Nightingale M P, Den Nijs M 1982 Phys. Rev. Lett. 49 405

    [11]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [12]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [13]

    Konig M, Wiedmann S, Brune C, Roth A, Buthmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [14]

    Sheng D N, Weng Z Y, Sheng L, Haldane F D M 2006 Phys. Rev. Lett. 97 036808

    [15]

    Yang Y Y, Xu Z, Sheng L, Wang B G, Xing D Y, Sheng D N 2011 Phys. Rev. Lett. 107 066602

    [16]

    Pradan E 2009 Phys. Rev. B 80 125327

    [17]

    Qiao Z H, Yang S A, Feng W X, Tse W K, Ding J, Yao Y G, Wang J, Niu Q 2010 Phys. Rev. B 82 161414

    [18]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [19]

    Onoda M, Nagaosa N 2003 Phys. Rev. Lett. 90 206601

    [20]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802

    [21]

    Raghu S, Chung S B, Qi X L, Zhang S C 2010 Phys. Rev. Lett. 104 116401

    [22]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61

    [23]

    Wu C 2008 Phys. Rev. Lett. 101 186807

    [24]

    Guo H M, Franz M 2009 Phys. Rev. B 80 113102

    [25]

    Zhang Z Y 2011 J. Phys. Condens. Matter 23 365801

    [26]

    Ishizuka H, Motome Y 2013 Phys. Rev. B 87 081105

    [27]

    Kargarian M, Fiete G A 2010 Phys. Rev. B 82 085106

    [28]

    Chen W C, Liu R, Wang Y F, Gong C D 2012 Phys. Rev. B 86 085311

    [29]

    Ohgushi K, Murakami S, Nagaosa N 2000 Phys. Rev. B 62 R6065

    [30]

    Wang Z, Zhang P 2008 Phys. Rev. B 77 125119

    [31]

    Shen R, Shao L B, Wang B, Xing D Y 2010 Phys. Rev. B 81 041410

    [32]

    Beugeling W, Everts J C, Morais S C 2012 Phys. Rev. B 86 195129

    [33]

    Zhao A, Shen S Q 2012 Phys. Rev. B 85 085209

    [34]

    Weeks C, Franz M 2010 Phys. Rev. B 82 085310

    [35]

    Sun K, Fradkin E 2008 Phys. Rev. B 78 245122

    [36]

    He Y, Moore J, Varma C M 2012 Phys. Rev. B 85 155106

    [37]

    Stanescu T D, Galitski V, Vaishnav J Y, Clark C W, Das Sarma S 2009 Phys. Rev. A 79 053639

    [38]

    Zhu S L, Fu H, Wu C J, Zhang S C, Duan L M 2006 Phys. Rev. Lett. 97 240401

    [39]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885

    [40]

    Goldman N, Urban D F, Bercioux D 2011 Phys. Rev. A 83 063601

    [41]

    Gibertini M, Singha A, Pellegrini V, Polini M, Vignale G, Pinczuk A, Pfeiffer L N, West K W 2009 Phys. Rev. B 79 241406

    [42]

    Zhang C, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401

    [43]

    Chosh P, Sau J D, Tewari S, Das Sarma S 2010 Phys. Rev. B 82 184525

    [44]

    Temari S, Sau J D 2012 Phys. Rev. Lett. 109 150408

  • [1] Gu Zhao-Long, Li Jian-Xin. Topological order and fractionalized excitations in quantum many-body systems. Acta Physica Sinica, 2024, 73(7): 070301. doi: 10.7498/aps.73.20240222
    [2] Chen Xi-Hao, Xia Ji-Hong, Li Meng-Hui, Zhai Fu-Qiang, Zhu Guang-Yu. Quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [3] Wang Zhi-Mei, Wang Hong, Xue Nai-Tao, Cheng Gao-Yan. Quantum coherence in spin-orbit coupled quantum dots system. Acta Physica Sinica, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [4] Jia Liang-Guang, Liu Meng, Chen Yao-Yao, Zhang Yu, Wang Ye-Liang. Research progress of two-dimensional quantum spin Hall insulator in monolayer 1T'-WTe2. Acta Physica Sinica, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [5] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [6] A study in quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211433
    [7] Zhang Ai-Xia, Jiang Yan-Fang, Xue Ju-Kui. Nonlinear energy band structure of spin-orbit coupled Bose-Einstein condensates in optical lattice. Acta Physica Sinica, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [8] Xue Hai-Bin, Duan Zhi-Lei, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through Su-Schrieffer-Heeger chain with spin-orbit coupling. Acta Physica Sinica, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [9] Shi Ting-Ting, Wang Liu-Jiu, Wang Jing-Kun, Zhang Wei. Some recent progresses on the study of ultracold quantum gases with spin-orbit coupling. Acta Physica Sinica, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [10] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [11] Li Zhi-Qiang, Wang Yue-Ming. One-dimensional spin-orbit coupling Bose gases with harmonic trapping. Acta Physica Sinica, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [12] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [13] Chen Xi-Hao, Wang Xiu-Juan. Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model. Acta Physica Sinica, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [14] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [15] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [16] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [17] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [18] Gong Shi-Jing, Duan Chun-Gang. Recent progress in Rashba spin orbit coupling on metal surface. Acta Physica Sinica, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [19] Dong Quan-Li, Zhang Jie, Yang Jie, Jiang Zhao-Tan. Electronic energy band structures of carbon nanotubeswith spin-orbit coupling interaction. Acta Physica Sinica, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [20] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
Metrics
  • Abstract views:  7839
  • PDF Downloads:  332
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2016
  • Accepted Date:  17 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map