Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hong-Ou-Mandel interference between two independent all-fiber multiplexed photon sources

Li Yin-Hai Xu Zhao-Huai Wang Shuang Xu Li-Xin Zhou Zhi-Yuan Shi Bao-Sen

Citation:

Hong-Ou-Mandel interference between two independent all-fiber multiplexed photon sources

Li Yin-Hai, Xu Zhao-Huai, Wang Shuang, Xu Li-Xin, Zhou Zhi-Yuan, Shi Bao-Sen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Interference between independent photon sources is the key technique to realize complex quantum systems for more sophisticated applications such as multi-photon entanglement generation and quantum teleportation. Here, we report Hong-Ou-Mandel interference (HOMI) between two independent 1.55 m all-fiber photon pair sources over two 100 GHz dense wave division multiplexing (DWDM) channels, whose visibility reaches 53.2%8.4% (82.9%5.3%) without (with) back ground counts subtracted. In addition, we theoretically describe in detail the single photon spectral purity of the photon source generated in dispersion shifted fiber (DSF), simulate the influences of the pulse width and filter bandwidth on the purity, and obtain the optimized condition. The optimized pump pulse width is 8 ps and filter bandwidth is about 40 GHz or less. A home-made 1550.1 nm mode-locked fiber laser source, whose pulse width and repetition rate are 25 ps and 27.9 MHz respectively, acts as a pump of photon source. A tunable attenuator is used to adjust the pump power of the photon source, and the broad band background fluorescence photons are filtered out by cascade 100 GHz DWDM filters. The clean pump beam is divided into two equal parts by the 50 : 50 optical coupler to pump two 300 m DSFs (cooled by liquid nitrogen) to generate independent photon sources. Then the strong pump beam and noise photon from Raman scattering in orthogonal polarization are removed by 2 groups of 200 GHz DWDM filters and fiber polarization rotator and polarizer. Then two 100 GHz DWDMs are used for separating photons at correlated channel pairs. The relative delay between the two independent photons is adjusted by tunable fiber delay line. Photons from the same channels are combined in a second beam splitter for interference, and the other two photons are used as trigger signals. The two triggered photons are detected by two free running InGaAs avalanched single photon detectors (APD1, APD4, ID Quanta, ID220, 20% detection efficiency, 3 s dead time, dark count rate 4k cps), and the outputs of detectors APD1 and APD4 are used to trigger two single-photon detectors running in the gated mode (APD2, APD3, Qasky, Hefei, China, 100 MHz, free gating single photon detectors, 20% detection efficiency, dark count probability 410-5 per gate) for twophoton coincidence measurement. Detection output signals from APD2 and APD3 are sent to our coincidence count device (Pico quanta, TimeHarp 260, 1.6 ns coincidence window) for four-photon coincidence measurement. Before measuring the HOMI, we obtain a maximum-coincidence-to-accidental-coincidence ratio (CAR) of 131 by cooling the fiber in liquid nitrogen when the pump power is 23 W. There are a few remarks we want to point out.Firstly, the photon sources are not operated at the optimized pump pulse width for pure single photon generation, but narrow band 100 GHz filters are used in the experiments to increase the purity of the sources. Secondly, single photon detectors used in our experiment have lower detection efficiency and much higher dark counts than nano-wire single photon detectors, if we have high-performance nano-wire single photon detector, experimental results will be greatly improved due to the four-fold coincidences and dark coincidences scaling quadruplicate with the detection efficiency and dark count probability of a single detector. Thirdly, we use relatively high pump power for each DSF (0.12 mW) to reduce measurement time for photon coincidence, which will lead to a very poor raw visibility certainly. Finally, though only a 100 GHz channel pair is used in our experiment, we can use other channels for multiplexing such interference processes to improve the channel capacity in future quantum communication tasks theoretically. Our study shows greatly promising integrated optical elements for future scalable quantum information processing.
      Corresponding author: Xu Li-Xin, xulixin@ustc.edu.cn;zyzhouphy@ustc.edu.cn ; Zhou Zhi-Yuan, xulixin@ustc.edu.cn;zyzhouphy@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174271, 61275115, 61435011, 61525504) and the Fundamental Research Funds for the Central Universities, China (Grant No. WK2030380009).
    [1]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein S L 2015 Nat. Photon. 9 641

    [4]

    Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C, Han Z F 2015 Phys. Rev. Lett. 115 160502

    [5]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879

    [6]

    Tan Y G, Liu Q 2016 Chin. Phys. Lett. 33 090303

    [7]

    Ma H X, Bao W S, Li H W, Chou C 2016 Chin. Phys. B 25 080309

    [8]

    Kaltenbaek R, Blauensteiner B, Zukowski M, Aspelmeyer M, Zeilinger A 2006 Phys. Rev. Lett. 96 240502

    [9]

    Mosley P J, Lundeen J S, Smith B J, Wasylczyk P, U'Ren A B, Silberhorn C, Walmsley I A 2008 Phys. Rev. Lett. 100 133601

    [10]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011

    [11]

    Tanida M, Okamoto R, Takeuchi S 2012 Opt. Express 20 15275

    [12]

    Kim Y H, Grice W P 2005 Opt. Lett. 30 908

    [13]

    Wasilewski W, Wasylczyk P, Kolenderski P, Banaszek K, Radzewicz C 2006 Opt. Lett. 31 1130

    [14]

    Fulconis J, Alibart O, O'Brien J L, Wadsworth W J, Rarity J G 2007 Phys. Rev. Lett. 99 120501

    [15]

    Halder M, Fulconis J, Cemlyn B, Clark A, Xiong C, Wadsworth W J, Rarity J G 2009 Opt. Express 17 4670

    [16]

    Soller C, Cohen O, Smith B J, Walmsley I A, Silberhorn C 2011 Phys. Rev. A 83 031806

    [17]

    Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M, Sasaki M 2013 Phys. Rev. A 87 063801

    [18]

    McMillan A R, Labonte L, Clark A S, Bell B, Alibart O, Martin A, Wadsworth W J, Tanzilli S, Rarity J G 2013 Sci. Rep. 3 2032

    [19]

    Li X, Voss P L, Sharping J E, Kumar P 2005 Phys. Rev. Lett. 94 053601

    [20]

    Takesue H, Inoue K 2004 Phys. Rev. A 70 031802

    [21]

    Takesue H, Inoue K 2005 Phys. Rev. A 72 041804

    [22]

    Wang S X, Kanter G S 2009 IEEE J. Selected Topics in Quantum Electronics 15 1733

    [23]

    Yang L, Li X Y, Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 李小英, 王宝善 2008 57 4933]

    [24]

    Silverstone J W, Bonneau D, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, Natarajan C M, Tanner M G, Hadfield R H, Zwiller V, Marshall G D, Rarity J G, O'Brien J L, Thompson M G 2014 Nat. Photon. 8 104

    [25]

    Reimer C, Kues M, Caspani L, Wetzel B, Roztocki P, Clerici M, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Little B E, Chu S T, Moss D J, Morandotti R 2015 Nat. Comunn. 6 8236

    [26]

    Reimer C, Kues M, Roztocki P, Wetzel B, Grazioso F, Little B E, Chu S T, Johnston T, Bromberg Y, Caspani L, Moss D J, Morandotti R 2016 Science 351 1176

    [27]

    Takesue H 2007 Appl. Phys. Lett. 90 204101

    [28]

    Li Y H, Zhou Z Y, Xu Z H, Xu L X, Shi B S, Guo G C 2016 Phys. Rev. A 94 043810

    [29]

    U'Ren A B, Silberhorn C, Banaszek K, Walmsley I A, Erdmann R, Grice W P, Raymer M G 2005 Laser Phys. 15 146

    [30]

    Grice W P, U'Ren A B, Walmsley I A 2001 Phys. Rev. A 64 063815

    [31]

    Law C K, Walmsley I A, Eberly J H 2000 Phys. Rev. Lett. 84 5304

    [32]

    Jin R B, Shimizu R, Wakui K, Benichi H, Sasaki M 2013 Opt. Express 21 10659

  • [1]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein S L 2015 Nat. Photon. 9 641

    [4]

    Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C, Han Z F 2015 Phys. Rev. Lett. 115 160502

    [5]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879

    [6]

    Tan Y G, Liu Q 2016 Chin. Phys. Lett. 33 090303

    [7]

    Ma H X, Bao W S, Li H W, Chou C 2016 Chin. Phys. B 25 080309

    [8]

    Kaltenbaek R, Blauensteiner B, Zukowski M, Aspelmeyer M, Zeilinger A 2006 Phys. Rev. Lett. 96 240502

    [9]

    Mosley P J, Lundeen J S, Smith B J, Wasylczyk P, U'Ren A B, Silberhorn C, Walmsley I A 2008 Phys. Rev. Lett. 100 133601

    [10]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011

    [11]

    Tanida M, Okamoto R, Takeuchi S 2012 Opt. Express 20 15275

    [12]

    Kim Y H, Grice W P 2005 Opt. Lett. 30 908

    [13]

    Wasilewski W, Wasylczyk P, Kolenderski P, Banaszek K, Radzewicz C 2006 Opt. Lett. 31 1130

    [14]

    Fulconis J, Alibart O, O'Brien J L, Wadsworth W J, Rarity J G 2007 Phys. Rev. Lett. 99 120501

    [15]

    Halder M, Fulconis J, Cemlyn B, Clark A, Xiong C, Wadsworth W J, Rarity J G 2009 Opt. Express 17 4670

    [16]

    Soller C, Cohen O, Smith B J, Walmsley I A, Silberhorn C 2011 Phys. Rev. A 83 031806

    [17]

    Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M, Sasaki M 2013 Phys. Rev. A 87 063801

    [18]

    McMillan A R, Labonte L, Clark A S, Bell B, Alibart O, Martin A, Wadsworth W J, Tanzilli S, Rarity J G 2013 Sci. Rep. 3 2032

    [19]

    Li X, Voss P L, Sharping J E, Kumar P 2005 Phys. Rev. Lett. 94 053601

    [20]

    Takesue H, Inoue K 2004 Phys. Rev. A 70 031802

    [21]

    Takesue H, Inoue K 2005 Phys. Rev. A 72 041804

    [22]

    Wang S X, Kanter G S 2009 IEEE J. Selected Topics in Quantum Electronics 15 1733

    [23]

    Yang L, Li X Y, Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 李小英, 王宝善 2008 57 4933]

    [24]

    Silverstone J W, Bonneau D, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, Natarajan C M, Tanner M G, Hadfield R H, Zwiller V, Marshall G D, Rarity J G, O'Brien J L, Thompson M G 2014 Nat. Photon. 8 104

    [25]

    Reimer C, Kues M, Caspani L, Wetzel B, Roztocki P, Clerici M, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Little B E, Chu S T, Moss D J, Morandotti R 2015 Nat. Comunn. 6 8236

    [26]

    Reimer C, Kues M, Roztocki P, Wetzel B, Grazioso F, Little B E, Chu S T, Johnston T, Bromberg Y, Caspani L, Moss D J, Morandotti R 2016 Science 351 1176

    [27]

    Takesue H 2007 Appl. Phys. Lett. 90 204101

    [28]

    Li Y H, Zhou Z Y, Xu Z H, Xu L X, Shi B S, Guo G C 2016 Phys. Rev. A 94 043810

    [29]

    U'Ren A B, Silberhorn C, Banaszek K, Walmsley I A, Erdmann R, Grice W P, Raymer M G 2005 Laser Phys. 15 146

    [30]

    Grice W P, U'Ren A B, Walmsley I A 2001 Phys. Rev. A 64 063815

    [31]

    Law C K, Walmsley I A, Eberly J H 2000 Phys. Rev. Lett. 84 5304

    [32]

    Jin R B, Shimizu R, Wakui K, Benichi H, Sasaki M 2013 Opt. Express 21 10659

  • [1] Xu Yao-Kun, Sun Shi-Hai, Zeng Yao-Yuan, Yang Jun-Gang, Sheng Wei-Dong, Liu Wei-Tao. General theory of quantum holography based on two-photon Interference. Acta Physica Sinica, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [2] Zhai Yi-Wei, Li Wang. SSA-BP network model based Hong-Ou-Mandel interference delay measurement and its application in quantum gyroscope. Acta Physica Sinica, 2023, 72(13): 138503. doi: 10.7498/aps.72.20230283
    [3] Sang Di, Xu Ming-Feng, An Qiang, Fu Yun-Qi. Freeform wavelength division multiplexing metagrating based on topology optimization. Acta Physica Sinica, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [4] Cao Ruo-Lin, Peng Qing-Xuan, Wang Jin-Dong, Chen Yong-Jie, Huang Yun-Fei, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback. Acta Physica Sinica, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [5] Tian Ying, Cai Wu-Hao, Yang Zi-Xiang, Chen Feng, Jin Rui-Bo, Zhou Qiang. Hong-Ou-Mandel interference of entangled photons generated under pump-tight-focusing condition. Acta Physica Sinica, 2022, 71(5): 054201. doi: 10.7498/aps.71.20211783
    [6] Zhai Yi-Wei, Dong Rui-Fang, Quan Run-Ai, Xiang Xiao, Liu Tao, Zhang Shou-Gang. Cascaded Hong-Ou-Mandel interference of entangled photon pairs and its application in multiple delay parameters measurement. Acta Physica Sinica, 2021, 70(12): 120302. doi: 10.7498/aps.70.20210071
    [7] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [8] Zhang Jia, Xu Xu-Ming, He Ling-Juan, Yu Tian-Bao, Guo Hao. Four-wavelength multiplexer/demultiplexer based on photonic crystal resonant coupling. Acta Physica Sinica, 2012, 61(5): 054213. doi: 10.7498/aps.61.054213
    [9] Yang Lei, Ma Xiao-Xin, Cui Liang, Guo Xue-Shi, Li Xiao-Ying. Fiber-based narrow-band single-photon source with high heralding efficiency. Acta Physica Sinica, 2011, 60(11): 114206. doi: 10.7498/aps.60.114206
    [10] Ye Tao, Xu Xu-Ming. The design and optimization of high efficiency heterostructure four-wavelength wavelength division multiplexing. Acta Physica Sinica, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [11] Zhang Jian-Zhong, Wang An-Bang, Wang Yun-Cai. Wavelength division multiplexing of chaotic optical communication and OC-48 fiber communication. Acta Physica Sinica, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [12] Du Jian-Xin. Analysis of non-degenerate four-wave-mixing crosstalk in DWDM system. Acta Physica Sinica, 2009, 58(2): 1046-1052. doi: 10.7498/aps.58.1046
    [13] Li Qi-Liang, Sun Li-Li, Chen Jun-Lang, Li Qing-Shan, Tang Xiang-Hong, Qian Sheng, Lin Li-Bin. Theoretical analysis of cross-phase modulational sideband instability in wavelength-division multiplexed system with periodic dispersion managed fiber links. Acta Physica Sinica, 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [14] Li Qi-Liang, Zhu Hai-Dong, Li Yuan-Min, Tang Xiang-Hong, Lin Li-Bin. Cross-phase modulational sideband instability in wavelength-division-multiplexing system with periodic lumped amplifiers. Acta Physica Sinica, 2005, 54(6): 2686-2693. doi: 10.7498/aps.54.2686
    [15] Tan Zhong-Wei, Zheng Kai, Liu Yan, Fu Yong-Jun, Chen Yong, Cao Ji-Hong, Ning Ti-Gang, Dong Xiao-Wei, Ma Li-Na, Jian Shui-Sheng. Application of dispersion compensator based on chirped fiber gratings in ultra long-hual DWDM system. Acta Physica Sinica, 2005, 54(11): 5218-5223. doi: 10.7498/aps.54.5218
    [16] Qin Xiao-Yun, Huang Bi-Qin, Chen Hai-Xing, Yang Li-Gong, Gu Pei-Fu. Wavelength demultiplexer using the spatial dispersion of repeated-period double-chirped structures*. Acta Physica Sinica, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [17] Han Ming, Lou Cai-Yun, Li Yu-Hua, Gao Yi-Zhi. . Acta Physica Sinica, 2000, 49(4): 751-755. doi: 10.7498/aps.49.751
    [18] Kong Jia-min, Fang Qiang, Liu Juan, Wang Yong-Chang. . Acta Physica Sinica, 2000, 49(3): 449-454. doi: 10.7498/aps.49.449
    [19] GONG JIA-MIN, LIU JUAN, FANG QIANG, WANG YONG-CHANG. THE ANALYTICAL MODEL OF SRS IN SINGLE-MODE SILICA FIBER IN DENSITY WAVELENGTH DI VISION MULTIPLEXED OPTICAL COMMUNICATION SYSTEM. Acta Physica Sinica, 2000, 49(7): 1287-1291. doi: 10.7498/aps.49.1287
    [20] WU XIAO-PING, FAN CHAO-YANG, ZHOU WEN. Y-G ALGORITHM USED IN WDM. Acta Physica Sinica, 1997, 46(9): 1751-1757. doi: 10.7498/aps.46.1751
Metrics
  • Abstract views:  6986
  • PDF Downloads:  318
  • Cited By: 0
Publishing process
  • Received Date:  21 February 2017
  • Accepted Date:  29 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map