-
The photocatalytic properties of TiO2 improved by modifying its surface have attracted more and more attention, because they play an important role in the photocatalytic degradation of greenhouse gases. Based on the fact that the photocatalytic reactions main occur on the catalyst surface, the surface modification becomes an effective method to improve the photocatalyst properties while the reaction mechanism research can give us a clear picture about it. Using the first principle calculations, the formation energies of TiO2 are calculated with doped and codoped by Cu and Ag atoms at different positions of the (001) and (101) surfaces. Comparing the formation energies, the most stable crystal structures are obtained while the electronic structures are calculated. Based on the analysis of the band structures and the density of states of atoms, it is proved that the oxidation activity of the active group formed on the (001) surface is stronger than that on (101) surface, which is more conducive to the improvement of photocatalytic oxidation properties. Meanwhile, the TiO2 compounds codoped by bimetal on the two surfaces have better light response than doped by one species of ions, which is in good agreement with the former experimental results.
-
Keywords:
- TiO2 /
- surface modification /
- bimetallic doping /
- absorption spectrum
[1] Wang P, Grtze M 2003 Nat. Mater. 21 402
[2] Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Str. 1061 160
[3] Mills A, Hunte S L 1997 J. Photoch. Photobiol. A 8 1
[4] Wang X J, Song J K, Huang J Y, Zhang J, Wang X, Ma R R, Wang J Y, Zhao J F 2016 Appl. Surf. Sci. 390 190
[5] Li L, Zhuang H S, Bu D 2011 Appl. Surf. Sci. 257 9221
[6] He Z Q, Hong T M, Chen J M, Song S 2012 Sep. Purif. Technol. 96 50
[7] Wen J, Li X, Liu W, Fang Y, Xie J, Xu Y 2015 Chin. J. Catal. 36 2049
[8] Larumbe S, Monge M, Gmez-Polo C 2015 Appl. Surf. Sci. 327 490
[9] Yang G M, Liang Z C, Huang H H 2017 Acta Phys. Sin. 66 057301 (in Chinese) [杨光敏, 梁志聪, 黄海华 2017 66 057301]
[10] Fang W, Zhou Y, Dong C, Xing M, Zhang J 2016 Catal. Today 266 188
[11] Singh S A, Madras G 2016 Appl. Catal. A: General 518 102
[12] Zhang X, Chen Y L, Liu R S, Tsai D P 2013 Rep. Prog. Phys. 76 046401
[13] Busiakiewicz A, Kisielewska A, Piwoński I, Batory D 2017 Appl. Surf. Sci. 401 378
[14] Li Z B, Wang X, Jia L C, Xing X B 2017 Catal. Commun. 92 23
[15] Kale M J, Avanesian T, Christopher P 2014 ACS Catal. 4 116
[16] Park M S, Kang M 2008 Mater. Lett. 62 183
[17] Park J W, Kang M 2007 Int J. Hydrog. Energy 32 4840
[18] Rather R A, Singh S, Pal B 2017 Sol. Energ. Mat. Sol. C 160 463
[19] Jaafar N F, Jalil A A, Triwahyono S 2017 Appl. Surf. Sci. 392 1068
[20] Bandara J, Udawatta C P K, Rajapakse C S K 2005 Photochem. Photobiol. Sci. 4 857
[21] Ghorbani H R, Attar H, Soltani S 2015 Indian J. Appl. Pure Biol. 30 139
[22] Taner M, Sayar N, Yulug I G, Suzer S 2011 J. Mater. Chem. 21 13150
[23] Liu J, Chen F 2012 Int. J. Electrochem. Sci. 7 9560
[24] Kumar M K, Bhavani K, Naresh G, Srinivas B, Venugopal A 2016 Appl. Catal. B: Environ. 199 282
[25] Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]
[26] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[27] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Ernzerhof B K M, Perdew J P 1996 Phys. Rev. Lett. 77 3865
[29] Jia L C, Wu C C, Han S, Yao N, Li Y Y, Li Z Z, Chi B, Pu J, Li J 2011 J. Alloy. Compd. 509 6067
-
[1] Wang P, Grtze M 2003 Nat. Mater. 21 402
[2] Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Str. 1061 160
[3] Mills A, Hunte S L 1997 J. Photoch. Photobiol. A 8 1
[4] Wang X J, Song J K, Huang J Y, Zhang J, Wang X, Ma R R, Wang J Y, Zhao J F 2016 Appl. Surf. Sci. 390 190
[5] Li L, Zhuang H S, Bu D 2011 Appl. Surf. Sci. 257 9221
[6] He Z Q, Hong T M, Chen J M, Song S 2012 Sep. Purif. Technol. 96 50
[7] Wen J, Li X, Liu W, Fang Y, Xie J, Xu Y 2015 Chin. J. Catal. 36 2049
[8] Larumbe S, Monge M, Gmez-Polo C 2015 Appl. Surf. Sci. 327 490
[9] Yang G M, Liang Z C, Huang H H 2017 Acta Phys. Sin. 66 057301 (in Chinese) [杨光敏, 梁志聪, 黄海华 2017 66 057301]
[10] Fang W, Zhou Y, Dong C, Xing M, Zhang J 2016 Catal. Today 266 188
[11] Singh S A, Madras G 2016 Appl. Catal. A: General 518 102
[12] Zhang X, Chen Y L, Liu R S, Tsai D P 2013 Rep. Prog. Phys. 76 046401
[13] Busiakiewicz A, Kisielewska A, Piwoński I, Batory D 2017 Appl. Surf. Sci. 401 378
[14] Li Z B, Wang X, Jia L C, Xing X B 2017 Catal. Commun. 92 23
[15] Kale M J, Avanesian T, Christopher P 2014 ACS Catal. 4 116
[16] Park M S, Kang M 2008 Mater. Lett. 62 183
[17] Park J W, Kang M 2007 Int J. Hydrog. Energy 32 4840
[18] Rather R A, Singh S, Pal B 2017 Sol. Energ. Mat. Sol. C 160 463
[19] Jaafar N F, Jalil A A, Triwahyono S 2017 Appl. Surf. Sci. 392 1068
[20] Bandara J, Udawatta C P K, Rajapakse C S K 2005 Photochem. Photobiol. Sci. 4 857
[21] Ghorbani H R, Attar H, Soltani S 2015 Indian J. Appl. Pure Biol. 30 139
[22] Taner M, Sayar N, Yulug I G, Suzer S 2011 J. Mater. Chem. 21 13150
[23] Liu J, Chen F 2012 Int. J. Electrochem. Sci. 7 9560
[24] Kumar M K, Bhavani K, Naresh G, Srinivas B, Venugopal A 2016 Appl. Catal. B: Environ. 199 282
[25] Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]
[26] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[27] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Ernzerhof B K M, Perdew J P 1996 Phys. Rev. Lett. 77 3865
[29] Jia L C, Wu C C, Han S, Yao N, Li Y Y, Li Z Z, Chi B, Pu J, Li J 2011 J. Alloy. Compd. 509 6067
Catalog
Metrics
- Abstract views: 5947
- PDF Downloads: 324
- Cited By: 0