搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响

许镇潮 侯清玉

引用本文:
Citation:

GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响

许镇潮, 侯清玉

GGA+U study on the effects of Ag doping on the electronic structures and absorption spectra of ZnO

Xu Zhen-Chao, Hou Qing-Yu
PDF
导出引用
  • 目前, 当Ag掺杂ZnO摩尔数为0.0208-0.0278的范围内, Ag掺杂对ZnO吸收光谱影响的实验研究均有文献报道, 但是, 有两种不同的实验结果, 掺杂体系吸收光谱红移或蓝移两种相悖的报道. 为了解决本问题, 本文采用自旋密度泛函理论(DFT)框架下的广义梯度近似(GGA+U)平面波赝势方法, 构建三种Zn1-xAgxO (x=0, x=0.0278, x=0.0417)模型, 分别对所有模型进行几何结构优化和能量计算. 结果表明, 与纯的ZnO布居值和Zn-O的键长相比, 掺杂体系布居值减小、Ag-O键长增加、共价键减弱、离子键增强. 当Ag掺杂ZnO摩尔数为0.0278-0.0417的范围内, Ag掺杂量越增加、O原子2p轨道、Zn原子的4s, 3d轨道电荷数不变、Ag原子的5s轨道电荷数越增加、Ag原子的4d轨道电荷数越减小、掺杂体系晶格常数越增加、体积越增加、总能量越增加、稳定性越下降、形成能越下降、掺杂越难、掺杂体系的带隙越变窄、吸收光谱红移越显著. 计算结果与实验结果相一致. 并且合理解释了存在的问题. 这对设计和制备Ag掺杂ZnO体系的光催化剂有一定的理论指导作用.
    Nowadays, the studies on absorption spectra of Ag-doped ZnO have given two distinctly different experimental results, that is, the red shift or blue shift when the mole fraction of the impurity increases in a range from 0.0278 to 0.0417. To solve this contradiction, according to the first-principles plane-wave pseudopotential of the spin-polarized density functional theory (DFT), we set up three models for Zn1-xAgxO (x=0, 0.0278, 0.0417) to calculate the geometric structure and energy via the method of generalized gradient approximation (GGA+U). Calculated results indicate that compared with the Zn-O bond in pure ZnO system, the value of population decreases, and the bond length of Ag-O in Ag-doped ZnO system increases, this means covalent bond weakens and ionic bond strengthens. With the mole fraction of impurity increases in a range from 0.0278 to 0.0417, the orbital charges of O-2p, Zn-4s and Zn-3d keep unchanged, while the orbital charge of Ag-5s increases, and that of Ag-4d is reduced; the volume and total energy of the doped system increases, causing the system more unstable. Moreover, the formation energy of the doped system becomes lower, thereby making the doping difficult. Meanwhile, the band gap in the system narrows, and its absorption spectra exhibits a redshift. The calculated results are consistent with the experimental data, and can explain the phenomena reasonably. These results may be used in future design and preparation of new type photocatalyst from Ag-doped ZnO as a theoretical basis.
    • 基金项目: 国家自然科学基金(批准号: 61366008)、教育部“春晖计划”项目和内蒙古自治区高等学校科学研究项目(批准号: NJZZ13099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61366008), the “Spring Sunshine” Project of Ministry of Education of China, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant no. NJZZ13099).
    [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Chang J H, Lin H N 2014 Mater. Lett. 132 134

    [3]

    Zhang S B, Li C 2014 Scientia Sinica Physica, Mechanica & Astronomica 44 514 (in Chinese) [张少斌, 李春 2014 中国科学:物理学力学天文学 44 514]

    [4]

    Maikhuri D, Purohit S P, Mathur K C 2014 IEEE Photonics J. 6 2600415

    [5]

    Guo K Y, Chen X H, Han J H, Liu Z F 2014 J. Sol-Gel Sci. Technol. 72 92

    [6]

    Jin Y X, Cui Q L, Wang K, Hao J, Wang Q S, Zhang J 2011 J. Appl. Phys. 109 053521

    [7]

    Amornpitoksuk P, Suwanboon S, Sangkanu S, Sukhoom A, Muensit N, Baltrusaitis J 2012 Powder Technol. 219 158

    [8]

    Jeong S H, Park B N, Lee S B, Boo J H 2007 Surf. Coat. Technol. 201 5318

    [9]

    Badawya M I, Mahmoudb F A, Abdel-Khalekc A A, Gad-Allaha T A, Abdel Samada A A 2014 Desalin. Water. Treat. 52 2601

    [10]

    Khan F, Baek S H, Kim J H 2014 J. Alloys Compd. 584 190

    [11]

    Chai G L, Lin C S, Wang J Y, Zhang M Y, Wei J, Cheng W D 2011 J. Phys. Chem. C 115 2907

    [12]

    Zhang X D, Guo M L, Shen Y Y, Liu C L, Xue Y H, Zhu F, Zhang L H 2012 Comput. Mater. Sci. 54 75

    [13]

    Li Y L, Zhao X, Fan W L 2011 J. Phys. Chem. C 115 3552

    [14]

    Feng X Y, Zhang C W, Xu X J, Wang P J 2013 Nanoscale Res. Lett. 8 365

    [15]

    Xue H, Xu X L, Chen Y, Zhang G H, Ma S Y 2008 Appl. Surf. Sci. 255 1806

    [16]

    Khosravi G S, Yousefi R, Jamali S F, Huang N M 2014 Ceram. Int. 40 7957

    [17]

    Ghajari N, Kompany A, Movlarooy T, Roozban F, Majidiyan M 2013 J. Magn. Magn. Mater. 325 42

    [18]

    Gu G X, Xiang G, Luo J, Ren H T, Lan M, He D W, Zhang X 2012 J. Appl. Phys. 112 023913

    [19]

    Hou Q Y, Wu Y, Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese) [侯清玉, 乌云, 赵春旺 2014 63 137201]

    [20]

    Guo S Q, Hou Q Y, Zhao C W, Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese) [郭少强, 侯清玉, 赵春旺, 毛斐 2014 63 107101]

    [21]

    Jia T, Zhang X L, Liu T, Fan F R, Zeng Z, Li X G, Khomskii D I, Wu H 2014 Phys. Rev. B 89 245117

    [22]

    Li J C, Cao Q, Hou X Y 2013 J. Appl. Phys. 113 203518

    [23]

    Zeferino R S, Flores M B, Pal U 2011 J. Appl. Phys. 109 014308

    [24]

    He M, Tian Y F, Springer D, Putra I A, Xing G Z, Chia E E M, Cheong S A, Wu T 2011 Appl. Phy. Lett. 99 222511

    [25]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

  • [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Chang J H, Lin H N 2014 Mater. Lett. 132 134

    [3]

    Zhang S B, Li C 2014 Scientia Sinica Physica, Mechanica & Astronomica 44 514 (in Chinese) [张少斌, 李春 2014 中国科学:物理学力学天文学 44 514]

    [4]

    Maikhuri D, Purohit S P, Mathur K C 2014 IEEE Photonics J. 6 2600415

    [5]

    Guo K Y, Chen X H, Han J H, Liu Z F 2014 J. Sol-Gel Sci. Technol. 72 92

    [6]

    Jin Y X, Cui Q L, Wang K, Hao J, Wang Q S, Zhang J 2011 J. Appl. Phys. 109 053521

    [7]

    Amornpitoksuk P, Suwanboon S, Sangkanu S, Sukhoom A, Muensit N, Baltrusaitis J 2012 Powder Technol. 219 158

    [8]

    Jeong S H, Park B N, Lee S B, Boo J H 2007 Surf. Coat. Technol. 201 5318

    [9]

    Badawya M I, Mahmoudb F A, Abdel-Khalekc A A, Gad-Allaha T A, Abdel Samada A A 2014 Desalin. Water. Treat. 52 2601

    [10]

    Khan F, Baek S H, Kim J H 2014 J. Alloys Compd. 584 190

    [11]

    Chai G L, Lin C S, Wang J Y, Zhang M Y, Wei J, Cheng W D 2011 J. Phys. Chem. C 115 2907

    [12]

    Zhang X D, Guo M L, Shen Y Y, Liu C L, Xue Y H, Zhu F, Zhang L H 2012 Comput. Mater. Sci. 54 75

    [13]

    Li Y L, Zhao X, Fan W L 2011 J. Phys. Chem. C 115 3552

    [14]

    Feng X Y, Zhang C W, Xu X J, Wang P J 2013 Nanoscale Res. Lett. 8 365

    [15]

    Xue H, Xu X L, Chen Y, Zhang G H, Ma S Y 2008 Appl. Surf. Sci. 255 1806

    [16]

    Khosravi G S, Yousefi R, Jamali S F, Huang N M 2014 Ceram. Int. 40 7957

    [17]

    Ghajari N, Kompany A, Movlarooy T, Roozban F, Majidiyan M 2013 J. Magn. Magn. Mater. 325 42

    [18]

    Gu G X, Xiang G, Luo J, Ren H T, Lan M, He D W, Zhang X 2012 J. Appl. Phys. 112 023913

    [19]

    Hou Q Y, Wu Y, Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese) [侯清玉, 乌云, 赵春旺 2014 63 137201]

    [20]

    Guo S Q, Hou Q Y, Zhao C W, Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese) [郭少强, 侯清玉, 赵春旺, 毛斐 2014 63 107101]

    [21]

    Jia T, Zhang X L, Liu T, Fan F R, Zeng Z, Li X G, Khomskii D I, Wu H 2014 Phys. Rev. B 89 245117

    [22]

    Li J C, Cao Q, Hou X Y 2013 J. Appl. Phys. 113 203518

    [23]

    Zeferino R S, Flores M B, Pal U 2011 J. Appl. Phys. 109 014308

    [24]

    He M, Tian Y F, Springer D, Putra I A, Xing G Z, Chia E E M, Cheong S A, Wu T 2011 Appl. Phy. Lett. 99 222511

    [25]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

  • [1] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究.  , 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究.  , 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 贾晓芳, 侯清玉, 赵春旺. 采用第一性原理研究钼掺杂浓度对ZnO物性的影响.  , 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [5] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱.  , 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [6] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [7] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究.  , 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [9] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究.  , 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [10] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [11] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究.  , 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [12] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究.  , 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [13] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究.  , 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [15] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究.  , 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [16] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究.  , 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [17] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究.  , 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [18] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [19] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [20] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究.  , 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
计量
  • 文章访问数:  6835
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-09
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map