搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究

侯清玉 吕致远 赵春旺

引用本文:
Citation:

V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究

侯清玉, 吕致远, 赵春旺

Effects of V-heavy-doped ZnO on electric conductivity performance and absorption spectrum

Hou Qing-Yu, Lü Zhi-Yuan, Zhao Chun-Wang
PDF
导出引用
  • 目前,在V高掺杂ZnO中,当V掺杂量摩尔数为0.031250.04167的范围内,掺杂量越增加,电阻率越增加或越减小的两种实验结果均有文献报道. 为解决这个矛盾,本文采用密度泛函理论的第一性原理平面波超软赝势方法,构建未掺杂ZnO,V高掺杂的Zn1-xVxO (x=0.03125,0.04167) 两种超胞模型,首先,对所有体系进行几何结构优化,在此基础上,采用GGA+U的方法,计算所有体系的能带结构分布、态密度分布、吸收光谱分布. 结果表明,当掺杂量摩尔数为0.031250.04167的范围内,V掺杂量越增加,掺杂体系体积越增加,总能量越下降,形成能越减小,掺杂体系越稳定,相对电子浓度越减小,迁移率越减小,电导率越减小,最小光学带隙越增加,吸收光谱蓝移越显著. 计算结果与实验结果相一致.
    Nowadays, in the reports of V-heavy-doped ZnO, when the doping moles of V in the range of 0.03125 to 0.04167, there is a current controversy between the two experimental results, i.e. the conductivity may be increased or decreased as the doping content increases. To solve this contradiction, the undoped and the two different concentrations of heavy-doped V atoms in Zn1-xVxO(x=0.03125, 0.04167) compounds have been set up based on the first-principles plane wave ultra-soft pseudo potential method of density functional theory in this paper, then all three compunds are geometrically optimized, and on this basis the GGA+U method is adopted to calculate the band structures, density of states, and the absorption spectrum. Results reveal that when the doping mole of V is in the range of 0.03125 to 0.04167, the volume doped system of the is increased as the total energy decreases; as the doping mole of V increases, the formation energy is reduced, the doping system is more stable, and the relative electronic concentration decreases, the migration rate and the conductivity are reduced; as the optical band gap is enlarged, the absorption spectrum blue shift is more significant. There are in agreement with the experimental results.
    • 基金项目: 国家自然科学基金(批准号:61366008,51261017)、教育部春晖计划项目和内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017), this work was also supported by The Ministry of Education Spring sunshine plan funding, and the CollegeScience Research Projectof Inner Mongolia Autonomous Region (Grant No. NJZZ13099).
    [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Badeker K 1907 Ann. Phys. (LeiPzig) 22 749

    [3]

    GLima D, Kim D H, Kim J K, Kwon O, Yang K J, Park K I, Kim B S, Park S M W, Kwak D J 2006 SuPerlattice Microst 39 107

    [4]

    Hao X T, Ma J, Zhang D H, Yang Y G, Ma H L, Cheng C F, Liu X D 2002 Mat. Sei. Eng. B 90 50

    [5]

    Hao X T, Tan L W, Ong K S, Zhu F R 2006 J. Cryst. Growth 287 44

    [6]

    Thienprasert J T, Rujirawat S, Klysubun W, Duenow J N, Coutts T J, Zhang S B, Look D C, Limpijumnong S 2013 Phys. Rev. Lett. 110 055502

    [7]

    Hou Q Y, Li J J, Ying C, Zhao C W, Zhao E J, Zhang Y 2013 Chin. Phys. B 22 077103

    [8]

    Hou QY, Liu Q L, Zhao C W, Zhao E J 2014 Acta Phys. Sin. 63 057101(in Chinese) [侯清玉, 刘全龙, 赵春旺, 赵二俊 2014 63 057101]

    [9]

    Lin Y C, Chang C H, Shen C H, Wang P W, Lee Y C 2010 Thin Solid Films 518 6055

    [10]

    Krithiga R, Chandrasekaran G 2009 J. Cryst. Growth 311 4610

    [11]

    Mhamdi A, Boukhachem A, Madani M, Lachheb H, Boubaker K, Amlouk A, Amlouk M 2013 Optik 124 3764

    [12]

    Tahir N, Hussain S T, Usman M, Hasanain S K, Mumtaz A 2009 Appl. Surf. Sci. 255 8506

    [13]

    Singh S, Ramachandra R M S 2009 Phys. Rev. B 80 045210

    [14]

    Wang Q B, Zhou C, Wu J, L T 2013 Opt. Commun. 297 79

    [15]

    Gui Q F, Cui L, Pan J, Hu J G 2013 Acta Phys. Sin. 62 087103(in Chinese) [桂青凤, 崔磊, 潘靖, 胡经国 2013 62 087103]

    [16]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Chin. Phys. Lett. 26 016105

    [17]

    Mir L E, Ghribi F, Hajiri M, Ayadi Z B, Djessas K, Cubukcu M, Bardeleben H J 2011 Thin Solid Films 519 5787

    [18]

    Lovchinov K, Angelov O, Nichev H, Mikli V, Malinovska D D 2011 Energy Procedia 10 282

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Ska K Z 2001 J. Thin Solid Films 391 229

    [21]

    Yanfa Y, AL-Jassim M M 2004 Phys. Rev. B 69 085204

    [22]

    Wu L, Hou T J, Wang Y, Zhao Y F, Guo Z Y, Li Y Y, Lee S T 2012 J. Alloys Compd 541 250

    [23]

    García A G, Pérez W L, Hernádez R G 2013 Solid State Commun 64 68

    [24]

    Dunne P, Uhlemann M, Gebert A, Schultz L 2012 ECS Transactions 45 97

    [25]

    Vispute R D, Talyansky V, Choopun S, Sharma P P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca R L G 1998 Appl. Phys. Lett. 73 348

    [26]

    Karamat S, Rawat R S, Lee P, Tan T L, Ramanujan R V, Zhou W 2010 Appl. Surf. Sci. 256 2309

    [27]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescuv V S 2004 J Mat Sci 39 675

    [28]

    Wei L 2007 Ms. D. Dissertation (Kaifeng: Henan University) p64 (in Chinese) [魏凌2007硕士学位论文 (开封: 河南大学)第64页]

    [29]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [30]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun 39 1269

    [31]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [32]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828(in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 57 5828]

    [33]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [34]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101(in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]

    [35]

    Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212

    [36]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [37]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84

    [38]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells. 92 343

  • [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Badeker K 1907 Ann. Phys. (LeiPzig) 22 749

    [3]

    GLima D, Kim D H, Kim J K, Kwon O, Yang K J, Park K I, Kim B S, Park S M W, Kwak D J 2006 SuPerlattice Microst 39 107

    [4]

    Hao X T, Ma J, Zhang D H, Yang Y G, Ma H L, Cheng C F, Liu X D 2002 Mat. Sei. Eng. B 90 50

    [5]

    Hao X T, Tan L W, Ong K S, Zhu F R 2006 J. Cryst. Growth 287 44

    [6]

    Thienprasert J T, Rujirawat S, Klysubun W, Duenow J N, Coutts T J, Zhang S B, Look D C, Limpijumnong S 2013 Phys. Rev. Lett. 110 055502

    [7]

    Hou Q Y, Li J J, Ying C, Zhao C W, Zhao E J, Zhang Y 2013 Chin. Phys. B 22 077103

    [8]

    Hou QY, Liu Q L, Zhao C W, Zhao E J 2014 Acta Phys. Sin. 63 057101(in Chinese) [侯清玉, 刘全龙, 赵春旺, 赵二俊 2014 63 057101]

    [9]

    Lin Y C, Chang C H, Shen C H, Wang P W, Lee Y C 2010 Thin Solid Films 518 6055

    [10]

    Krithiga R, Chandrasekaran G 2009 J. Cryst. Growth 311 4610

    [11]

    Mhamdi A, Boukhachem A, Madani M, Lachheb H, Boubaker K, Amlouk A, Amlouk M 2013 Optik 124 3764

    [12]

    Tahir N, Hussain S T, Usman M, Hasanain S K, Mumtaz A 2009 Appl. Surf. Sci. 255 8506

    [13]

    Singh S, Ramachandra R M S 2009 Phys. Rev. B 80 045210

    [14]

    Wang Q B, Zhou C, Wu J, L T 2013 Opt. Commun. 297 79

    [15]

    Gui Q F, Cui L, Pan J, Hu J G 2013 Acta Phys. Sin. 62 087103(in Chinese) [桂青凤, 崔磊, 潘靖, 胡经国 2013 62 087103]

    [16]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Chin. Phys. Lett. 26 016105

    [17]

    Mir L E, Ghribi F, Hajiri M, Ayadi Z B, Djessas K, Cubukcu M, Bardeleben H J 2011 Thin Solid Films 519 5787

    [18]

    Lovchinov K, Angelov O, Nichev H, Mikli V, Malinovska D D 2011 Energy Procedia 10 282

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Ska K Z 2001 J. Thin Solid Films 391 229

    [21]

    Yanfa Y, AL-Jassim M M 2004 Phys. Rev. B 69 085204

    [22]

    Wu L, Hou T J, Wang Y, Zhao Y F, Guo Z Y, Li Y Y, Lee S T 2012 J. Alloys Compd 541 250

    [23]

    García A G, Pérez W L, Hernádez R G 2013 Solid State Commun 64 68

    [24]

    Dunne P, Uhlemann M, Gebert A, Schultz L 2012 ECS Transactions 45 97

    [25]

    Vispute R D, Talyansky V, Choopun S, Sharma P P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca R L G 1998 Appl. Phys. Lett. 73 348

    [26]

    Karamat S, Rawat R S, Lee P, Tan T L, Ramanujan R V, Zhou W 2010 Appl. Surf. Sci. 256 2309

    [27]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescuv V S 2004 J Mat Sci 39 675

    [28]

    Wei L 2007 Ms. D. Dissertation (Kaifeng: Henan University) p64 (in Chinese) [魏凌2007硕士学位论文 (开封: 河南大学)第64页]

    [29]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [30]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun 39 1269

    [31]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [32]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828(in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 57 5828]

    [33]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [34]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101(in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]

    [35]

    Schleife A, Fuchs F, Furthmller J 2006 J. Phys. Rev. B 73 245212

    [36]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [37]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84

    [38]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells. 92 343

  • [1] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性.  , 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [2] 贾晓芳, 侯清玉, 赵春旺. 采用第一性原理研究钼掺杂浓度对ZnO物性的影响.  , 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [3] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究.  , 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [4] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [5] 侯清玉, 李文材, 赵春旺. In–2N高共掺浓度和择优取向对ZnO最小光学带隙和吸收光谱的影响.  , 2015, 64(6): 067101. doi: 10.7498/aps.64.067101
    [6] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响.  , 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [7] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究.  , 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [8] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究.  , 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [9] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究.  , 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [10] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [11] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究.  , 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [12] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究.  , 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [13] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究.  , 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [14] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [15] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究.  , 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [16] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [17] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [18] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究.  , 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [19] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究.  , 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [20] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究.  , 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
计量
  • 文章访问数:  6589
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-10
  • 修回日期:  2014-06-06
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map