-
Nowadays, the studies on absorption spectra of Ag-doped ZnO have given two distinctly different experimental results, that is, the red shift or blue shift when the mole fraction of the impurity increases in a range from 0.0278 to 0.0417. To solve this contradiction, according to the first-principles plane-wave pseudopotential of the spin-polarized density functional theory (DFT), we set up three models for Zn1-xAgxO (x=0, 0.0278, 0.0417) to calculate the geometric structure and energy via the method of generalized gradient approximation (GGA+U). Calculated results indicate that compared with the Zn-O bond in pure ZnO system, the value of population decreases, and the bond length of Ag-O in Ag-doped ZnO system increases, this means covalent bond weakens and ionic bond strengthens. With the mole fraction of impurity increases in a range from 0.0278 to 0.0417, the orbital charges of O-2p, Zn-4s and Zn-3d keep unchanged, while the orbital charge of Ag-5s increases, and that of Ag-4d is reduced; the volume and total energy of the doped system increases, causing the system more unstable. Moreover, the formation energy of the doped system becomes lower, thereby making the doping difficult. Meanwhile, the band gap in the system narrows, and its absorption spectra exhibits a redshift. The calculated results are consistent with the experimental data, and can explain the phenomena reasonably. These results may be used in future design and preparation of new type photocatalyst from Ag-doped ZnO as a theoretical basis.
-
Keywords:
- Ag-doped ZnO /
- first-principles /
- electronic structures /
- absorption spectra
[1] Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526
[2] Chang J H, Lin H N 2014 Mater. Lett. 132 134
[3] Zhang S B, Li C 2014 Scientia Sinica Physica, Mechanica & Astronomica 44 514 (in Chinese) [张少斌, 李春 2014 中国科学:物理学力学天文学 44 514]
[4] Maikhuri D, Purohit S P, Mathur K C 2014 IEEE Photonics J. 6 2600415
[5] Guo K Y, Chen X H, Han J H, Liu Z F 2014 J. Sol-Gel Sci. Technol. 72 92
[6] Jin Y X, Cui Q L, Wang K, Hao J, Wang Q S, Zhang J 2011 J. Appl. Phys. 109 053521
[7] Amornpitoksuk P, Suwanboon S, Sangkanu S, Sukhoom A, Muensit N, Baltrusaitis J 2012 Powder Technol. 219 158
[8] Jeong S H, Park B N, Lee S B, Boo J H 2007 Surf. Coat. Technol. 201 5318
[9] Badawya M I, Mahmoudb F A, Abdel-Khalekc A A, Gad-Allaha T A, Abdel Samada A A 2014 Desalin. Water. Treat. 52 2601
[10] Khan F, Baek S H, Kim J H 2014 J. Alloys Compd. 584 190
[11] Chai G L, Lin C S, Wang J Y, Zhang M Y, Wei J, Cheng W D 2011 J. Phys. Chem. C 115 2907
[12] Zhang X D, Guo M L, Shen Y Y, Liu C L, Xue Y H, Zhu F, Zhang L H 2012 Comput. Mater. Sci. 54 75
[13] Li Y L, Zhao X, Fan W L 2011 J. Phys. Chem. C 115 3552
[14] Feng X Y, Zhang C W, Xu X J, Wang P J 2013 Nanoscale Res. Lett. 8 365
[15] Xue H, Xu X L, Chen Y, Zhang G H, Ma S Y 2008 Appl. Surf. Sci. 255 1806
[16] Khosravi G S, Yousefi R, Jamali S F, Huang N M 2014 Ceram. Int. 40 7957
[17] Ghajari N, Kompany A, Movlarooy T, Roozban F, Majidiyan M 2013 J. Magn. Magn. Mater. 325 42
[18] Gu G X, Xiang G, Luo J, Ren H T, Lan M, He D W, Zhang X 2012 J. Appl. Phys. 112 023913
[19] Hou Q Y, Wu Y, Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese) [侯清玉, 乌云, 赵春旺 2014 63 137201]
[20] Guo S Q, Hou Q Y, Zhao C W, Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese) [郭少强, 侯清玉, 赵春旺, 毛斐 2014 63 107101]
[21] Jia T, Zhang X L, Liu T, Fan F R, Zeng Z, Li X G, Khomskii D I, Wu H 2014 Phys. Rev. B 89 245117
[22] Li J C, Cao Q, Hou X Y 2013 J. Appl. Phys. 113 203518
[23] Zeferino R S, Flores M B, Pal U 2011 J. Appl. Phys. 109 014308
[24] He M, Tian Y F, Springer D, Putra I A, Xing G Z, Chia E E M, Cheong S A, Wu T 2011 Appl. Phy. Lett. 99 222511
[25] Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404
-
[1] Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526
[2] Chang J H, Lin H N 2014 Mater. Lett. 132 134
[3] Zhang S B, Li C 2014 Scientia Sinica Physica, Mechanica & Astronomica 44 514 (in Chinese) [张少斌, 李春 2014 中国科学:物理学力学天文学 44 514]
[4] Maikhuri D, Purohit S P, Mathur K C 2014 IEEE Photonics J. 6 2600415
[5] Guo K Y, Chen X H, Han J H, Liu Z F 2014 J. Sol-Gel Sci. Technol. 72 92
[6] Jin Y X, Cui Q L, Wang K, Hao J, Wang Q S, Zhang J 2011 J. Appl. Phys. 109 053521
[7] Amornpitoksuk P, Suwanboon S, Sangkanu S, Sukhoom A, Muensit N, Baltrusaitis J 2012 Powder Technol. 219 158
[8] Jeong S H, Park B N, Lee S B, Boo J H 2007 Surf. Coat. Technol. 201 5318
[9] Badawya M I, Mahmoudb F A, Abdel-Khalekc A A, Gad-Allaha T A, Abdel Samada A A 2014 Desalin. Water. Treat. 52 2601
[10] Khan F, Baek S H, Kim J H 2014 J. Alloys Compd. 584 190
[11] Chai G L, Lin C S, Wang J Y, Zhang M Y, Wei J, Cheng W D 2011 J. Phys. Chem. C 115 2907
[12] Zhang X D, Guo M L, Shen Y Y, Liu C L, Xue Y H, Zhu F, Zhang L H 2012 Comput. Mater. Sci. 54 75
[13] Li Y L, Zhao X, Fan W L 2011 J. Phys. Chem. C 115 3552
[14] Feng X Y, Zhang C W, Xu X J, Wang P J 2013 Nanoscale Res. Lett. 8 365
[15] Xue H, Xu X L, Chen Y, Zhang G H, Ma S Y 2008 Appl. Surf. Sci. 255 1806
[16] Khosravi G S, Yousefi R, Jamali S F, Huang N M 2014 Ceram. Int. 40 7957
[17] Ghajari N, Kompany A, Movlarooy T, Roozban F, Majidiyan M 2013 J. Magn. Magn. Mater. 325 42
[18] Gu G X, Xiang G, Luo J, Ren H T, Lan M, He D W, Zhang X 2012 J. Appl. Phys. 112 023913
[19] Hou Q Y, Wu Y, Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese) [侯清玉, 乌云, 赵春旺 2014 63 137201]
[20] Guo S Q, Hou Q Y, Zhao C W, Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese) [郭少强, 侯清玉, 赵春旺, 毛斐 2014 63 107101]
[21] Jia T, Zhang X L, Liu T, Fan F R, Zeng Z, Li X G, Khomskii D I, Wu H 2014 Phys. Rev. B 89 245117
[22] Li J C, Cao Q, Hou X Y 2013 J. Appl. Phys. 113 203518
[23] Zeferino R S, Flores M B, Pal U 2011 J. Appl. Phys. 109 014308
[24] He M, Tian Y F, Springer D, Putra I A, Xing G Z, Chia E E M, Cheong S A, Wu T 2011 Appl. Phy. Lett. 99 222511
[25] Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404
Catalog
Metrics
- Abstract views: 6836
- PDF Downloads: 425
- Cited By: 0