搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究

侯清玉 董红英 迎春 马文

引用本文:
Citation:

Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究

侯清玉, 董红英, 迎春, 马文

First-principles study on the effect of high Mn doped on the band gap and absorption spectrum of ZnO

Hou Qing-Yu, Dong Hong-Ying, Ying Chun, Ma Wen
PDF
导出引用
  • 采用密度泛函理论框架下的第一性原理平面波超软赝势方法, 建立了未掺杂与不同浓度的Mn原子取代Zn原子的三种Zn1-xMnxO超胞模型, 分别对模型进行了几何结构优化、态密度分布、能带分布和吸收光谱的计算. 结果表明: 电子非自旋极化处理的条件下, Mn掺杂浓度越小, ZnO形成能越小, 掺杂越容易, 晶体结构越稳定; Mn的掺入使得ZnO体系的杂质能带和导带发生简并化, 并且导带底和价带底同时向低能方向移动, 掺杂后的导带比价带下降得少导致禁带宽度变宽, ZnO吸收光谱明显出现蓝移现象, 计算结果和实验结果相一致. 同时, 电子自旋极化处理的条件下, 体系有磁性, 吸收光谱发生红移现象. 计算结果与相关实验结果相符合.
    According to the density functional theory, using first-principles plane-wave ultrasoft pseudopotential method, we set three different concentration Mn doped ZnO models, and perform the geomertry optimizations for the three modes. The total density of states, the band structures and the optical absorption are also calculated. The results show that in the case of non-spin state, the smaller the doping concentration of Mn is, the smaller the formation energy of ZnO is and the easier the Mn doping is, thus the stabler the crystal struetuer is; the Mn doping leads to the degenerations of the impurity energy band and the conduction band, and also to the optical absorption blue-shift. These calculation results accord with the experimental results. Moreover, the magnetism exists in the system under the situation of spin polarization, the absorption spectrum has a red-shift, which is consistent with the experimental result.
    • 基金项目: 国家自然科学基金 (批准号: 51062012)、教育部春晖计划和内蒙古自治区自然科学基金 (批准号: 2010MS0801, 2010BS0604) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51062012), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2010MS0801, 2010BS0604), and the Natural Inner Mongolia Autonomous Region of College of Science and Technology Research Project China (Grant No. NJ10073)
    [1]

    Yu A, Qian J S, Pan H, Cui Y M, Xu M G, Tu L, Chai Q L, Zhou X F 2011 Sensor Actuat. B 158 9

    [2]

    Razali R, Zak A K, Majid W H A, Darroudi M 2011 Ceram Int. 37 3657

    [3]

    Vinodkumar R, Lethy K J, Beena D, Detty A P, Navas I, Nayar U V, Pillai V P M, Ganesan V, Reddy V R 2010 Sol. Energy Mater. Sol. Cells 94 68

    [4]

    Karamdel J, Dee C F, Majlis B Y 2010 Appl. Surf. Sci. 256 6164

    [5]

    Ye N, Chen C C 2012 Opt. Mater. 34 753

    [6]

    Mera J, Doria J, Co'rdoba C, Paredes O, Go'mez A, Paucar C, Fuchs D, Mora'n O 2010 Physica B 405 3463

    [7]

    Cheng X M, Chien C L 2003 J. Appl. Phys. 93 7876

    [8]

    Yan X L, Hu D, Li H S, Li L X, Chong X Y, Wang Y D 2011 Physica B 406 3956

    [9]

    Shinde V R, Gujar T P, Lokhande C D, Mane R S, Han S H 2006 Mater. Chem. Phys. 96 326

    [10]

    Yun S Y, Cha G B, Kwon Y, Cho S, Hong S C 2004 J. Magn. Mater. 272-276 1563

    [11]

    Mounkachi O, Benyoussef A, Kenz A E, Saidi E H, Hlil E K 2008 J. Magn. Mater. 320 2760

    [12]

    Wang Q, Jena P 2004 Appl. Phys. Lett. 84 4170

    [13]

    Chen K, Fan G H, Zhang Y 2008 Acta Phys. Sin. 57 1054 (in Chinese) [陈琨, 范广涵, 章勇 2009 57 1054]

    [14]

    Osuch K, Lombardi E B, Gebicki W 2006 Phys. Rev. B 73 75202

    [15]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [16]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [17]

    Deng S H, Duan M Y, Xu M, He L 2011 Physica B 406 2314

    [18]

    Schleife A, Fuchs F, Furthmüller J 2006 J. Phys. Rev. B 73 245212

    [19]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [20]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L P, He H P, Zhao B H 2007 J. Appl. Phys. 101 083705

    [21]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [22]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343

    [23]

    Hossain F M, Sheppard L, Nowotny J, Murch G E 2008 J. Phys. Chem. Sol. 69 182

    [24]

    Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L, Mu R 2006 J. Chem. Phys. 124 074707

    [25]

    Zhao Y Z, Chen C L, Gao G M, Yang X G, Yuan X, Song Z M 2006 Acta. Phys. Sin. 55 3132 (in Chinese) [赵跃智, 陈长乐, 高国棉, 杨晓光, 袁孝, 宋宙模 2006 55 3132]

    [26]

    Sharma P, Gupta A, Owens F J, Inoue A, Rao K V 2004 J. Magn. Magn. Mater. 282 115

    [27]

    Kwang J K, Young R P 2003 J. Appl. Phys. 94 2

    [28]

    Kim K J, Park Y R 2003 J. Appl. Phys. 94 867

  • [1]

    Yu A, Qian J S, Pan H, Cui Y M, Xu M G, Tu L, Chai Q L, Zhou X F 2011 Sensor Actuat. B 158 9

    [2]

    Razali R, Zak A K, Majid W H A, Darroudi M 2011 Ceram Int. 37 3657

    [3]

    Vinodkumar R, Lethy K J, Beena D, Detty A P, Navas I, Nayar U V, Pillai V P M, Ganesan V, Reddy V R 2010 Sol. Energy Mater. Sol. Cells 94 68

    [4]

    Karamdel J, Dee C F, Majlis B Y 2010 Appl. Surf. Sci. 256 6164

    [5]

    Ye N, Chen C C 2012 Opt. Mater. 34 753

    [6]

    Mera J, Doria J, Co'rdoba C, Paredes O, Go'mez A, Paucar C, Fuchs D, Mora'n O 2010 Physica B 405 3463

    [7]

    Cheng X M, Chien C L 2003 J. Appl. Phys. 93 7876

    [8]

    Yan X L, Hu D, Li H S, Li L X, Chong X Y, Wang Y D 2011 Physica B 406 3956

    [9]

    Shinde V R, Gujar T P, Lokhande C D, Mane R S, Han S H 2006 Mater. Chem. Phys. 96 326

    [10]

    Yun S Y, Cha G B, Kwon Y, Cho S, Hong S C 2004 J. Magn. Mater. 272-276 1563

    [11]

    Mounkachi O, Benyoussef A, Kenz A E, Saidi E H, Hlil E K 2008 J. Magn. Mater. 320 2760

    [12]

    Wang Q, Jena P 2004 Appl. Phys. Lett. 84 4170

    [13]

    Chen K, Fan G H, Zhang Y 2008 Acta Phys. Sin. 57 1054 (in Chinese) [陈琨, 范广涵, 章勇 2009 57 1054]

    [14]

    Osuch K, Lombardi E B, Gebicki W 2006 Phys. Rev. B 73 75202

    [15]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [16]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [17]

    Deng S H, Duan M Y, Xu M, He L 2011 Physica B 406 2314

    [18]

    Schleife A, Fuchs F, Furthmüller J 2006 J. Phys. Rev. B 73 245212

    [19]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [20]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L P, He H P, Zhao B H 2007 J. Appl. Phys. 101 083705

    [21]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [22]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343

    [23]

    Hossain F M, Sheppard L, Nowotny J, Murch G E 2008 J. Phys. Chem. Sol. 69 182

    [24]

    Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L, Mu R 2006 J. Chem. Phys. 124 074707

    [25]

    Zhao Y Z, Chen C L, Gao G M, Yang X G, Yuan X, Song Z M 2006 Acta. Phys. Sin. 55 3132 (in Chinese) [赵跃智, 陈长乐, 高国棉, 杨晓光, 袁孝, 宋宙模 2006 55 3132]

    [26]

    Sharma P, Gupta A, Owens F J, Inoue A, Rao K V 2004 J. Magn. Magn. Mater. 282 115

    [27]

    Kwang J K, Young R P 2003 J. Appl. Phys. 94 2

    [28]

    Kim K J, Park Y R 2003 J. Appl. Phys. 94 867

  • [1] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究.  , 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究.  , 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [3] 贾晓芳, 侯清玉, 赵春旺. 采用第一性原理研究钼掺杂浓度对ZnO物性的影响.  , 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [4] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱.  , 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [5] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [6] 侯清玉, 李文材, 赵春旺. In–2N高共掺浓度和择优取向对ZnO最小光学带隙和吸收光谱的影响.  , 2015, 64(6): 067101. doi: 10.7498/aps.64.067101
    [7] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响.  , 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [8] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究.  , 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [9] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究.  , 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [10] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [11] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究.  , 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [12] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究.  , 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [13] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究.  , 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [15] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究.  , 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [16] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究.  , 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [17] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [18] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究.  , 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
计量
  • 文章访问数:  7909
  • PDF下载量:  1072
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-13
  • 修回日期:  2012-09-07
  • 刊出日期:  2013-02-05

/

返回文章
返回
Baidu
map