搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远程多光束激光相干场成像拍频误差校正研究

张羽 罗秀娟 刘辉 陈明徕 兰富洋 贾辉 曹蓓

引用本文:
Citation:

远程多光束激光相干场成像拍频误差校正研究

张羽, 罗秀娟, 刘辉, 陈明徕, 兰富洋, 贾辉, 曹蓓

Beat frequency error rectifying in multi-beam laser coherent remote tmaging

Zhang Yu, Luo Xiu-Juan, Liu Hui, Chen Ming-Lai, Lan Fu-Yang, Jia Hui, Cao Bei
PDF
导出引用
  • 多光束激光相干成像技术是地基观测空间目标的重要方式,各光束的稳定性和性能一致性直接决定着系统成像质量,目前针对系统频率稳定性对成像质量的影响以及激光源频漂的补偿已有一定研究,然而针对多光束发射系统,由驱动放大噪声及声光移频噪声引起的各光束间独立的频漂还需进一步抑制.基于此,本文提出了动态解调和置信区间解调两种抑制方法,理论仿真了动态解调对缓慢频漂抑制的可行性,同时实验证明了置信区间解调法对成像效果的提升,并在200 m和1.2 km的湍流环境中对该解调方法进行了验证.研究表明,置信区间解调法对于各拍频间独立漂移有较好的实时补偿效果,能够有效抑制发射阵列中由声光调制及驱动放大引入的频率噪声,对水平距离1.2 km外的25 mm目标成像角分辨率达到4 rad.本研究为未来远程大功率发射阵列成像中的频率噪声抑制提供了较好的技术方案.
    Coherent imaging with a multi-beam laser is considered as a key technique in ground based imaging. The image quality is directly determined by stability and consistency of each beam in transmitter. Although the stabilities of laser frequency and the drifting compensation methods have been studied previously, they mostly focused on the laser source. In most cases, especially in large transmitter array, however, transmitted beams are always disturbed by different influential factors, such as frequency drift induced by acoustic-optical modulation (AOM) and high power driven amplification. Therefore this kind of frequency drifting needs further rectification. Aiming at this problem, in this paper we propose two new methods called dynamic demodulation and dependence range demodulation. Firstly, the dynamic demodulation takes the whole drifting frequency drift as a changing procedure. It is believed that the beat frequency drifted at any position still carries the target information, so the system demodulates the signal at that drifted position. According to this method, the response speed of the demodulation system should be very high. But in a real system this acquisition is too high to be satisfied. It cannot work as quickly as expected. In computer simulation some slow varying drifts are induced at the beat frequency and the variation is distributed only in three parts of spatial frequency of transmitter interfering array. Simulation results show that this method may well compensate for slow drifting beat frequency. While its response speed is often limited by hardware system. On the other hand, for the dependence range demodulation, the beat drifting range is considered as a useful district, in which all the beat energy is added and demodulated at a preset position. An experiment is carried out to verify this method. The result demonstrates that it can well restrict the beat frequency drift within 100 Hz, which often happens in the procedure of AOM and driving amplification. Besides the laboratory setup research, the field experiments in 200 m and 1.5 km range are also carried out. The dependence range demodulation is proved to be well performed as well. The resolution of the 25 cm simulated target in 1.5 km reaches 0.008 rad. In the consideration of real system, the imaging range is further expanded and the amplifier power is stronger. The field experiments reveal that this demodulation method is applicable in such a condition. Therefore the research in this article provides some new techniques for the remote high resolution imaging in multi-beam laser interfering imaging.
      通信作者: 张羽, yuzhang16@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61505248)和总装备部预研基金(批准号:9140A21020115ZK18001)资助的课题.
      Corresponding author: Zhang Yu, yuzhang16@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505248) and Research Foundation of General Equipment Department, China (Grant No. 9140A21020115ZK18001).
    [1]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [2]

    Lu C M, Gao X, Tang J, Wang J J 2012 Proc. SPIE 8551 855110

    [3]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese)[张文喜, 相里斌, 孔新新, 李扬, 伍州, 周志盛 2013 62 164203]

    [4]

    Zhang Y, Luo X J, Cao B, Chen M L, Liu H, Xia A L, Lan F Y 2016 Acta Phys. Sin. 65 114201 (in Chinese)[张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋 2016 65 114201]

    [5]

    Dong L, Wang B, Liu X Y 2010 Chin. J. Opt. Appl. Opt. 3 440 (in Chinese)[董磊, 王斌, 刘欣悦 2010 中国光学与应用光学 3 440]

    [6]

    Hutchin R A 2012 US Patent 0292481 A1

    [7]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 66 024203]

    [8]

    Lu C M, Chen M L, Luo X J, Zhang Y, Liu H, Lan F Y, Cao B 2017 Acta Phys. Sin. 66 114201 (in Chinese)[陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓 2017 66 114201]

    [9]

    Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202 (in Chinese)[兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 66 204202]

    [10]

    Montilla I, Bechet C, Louarn L, Reyes M 2010 J. Opt. Soc. Am. 27 A9

    [11]

    William T 2012 Appl. Opt. 51 A11

    [12]

    Daissy H, Garces, William T 2010 Digital Holography and Three-Dimensional Imaging (Miami) DTuB8

    [13]

    Stephen T, Ridgway, Kenneth H 2010 Proc. SPIE 7735 77356Z-1

    [14]

    Kong X X, Huang M, Zhang W X 2012 Acta Opt. Sin. 32 1211001 (in Chinese)[孔新新, 黄旻, 张文喜 2012 光学学报 32 1211001]

    [15]

    Kong X X, Huang M, Zhang W X, Wu Z, Li Y, Zhou Z S 2013 Laser Optoelectron. Prog. 50 011102 (in Chinese)[孔新新, 黄旻, 张文喜, 伍洲, 李扬, 周志盛 2013 激光与光电子学进展 50 011102]

    [16]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽 2015 64 124205]

    [17]

    Chen W, Li Q, Wang Y G 2010 Acta Opt. Sin. 30 3441 (in Chinese)[陈卫, 黎全, 王雁桂 2010 光学学报 30 3441]

    [18]

    Holmes R B, Brinkley T 1996 Proc. SPIE 3815 11

    [19]

    Cuellar E L, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [20]

    Matwyschuk A 2017 Appl. Opt. 56 7766

    [21]

    Mansmann R, Thomson K, Smallwood G, Dreier T, Schulz C 2017 Opt. Express 25 2413

  • [1]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 J. Opt. Soc. Am. A 13 351

    [2]

    Lu C M, Gao X, Tang J, Wang J J 2012 Proc. SPIE 8551 855110

    [3]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese)[张文喜, 相里斌, 孔新新, 李扬, 伍州, 周志盛 2013 62 164203]

    [4]

    Zhang Y, Luo X J, Cao B, Chen M L, Liu H, Xia A L, Lan F Y 2016 Acta Phys. Sin. 65 114201 (in Chinese)[张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋 2016 65 114201]

    [5]

    Dong L, Wang B, Liu X Y 2010 Chin. J. Opt. Appl. Opt. 3 440 (in Chinese)[董磊, 王斌, 刘欣悦 2010 中国光学与应用光学 3 440]

    [6]

    Hutchin R A 2012 US Patent 0292481 A1

    [7]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 66 024203]

    [8]

    Lu C M, Chen M L, Luo X J, Zhang Y, Liu H, Lan F Y, Cao B 2017 Acta Phys. Sin. 66 114201 (in Chinese)[陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓 2017 66 114201]

    [9]

    Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202 (in Chinese)[兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 66 204202]

    [10]

    Montilla I, Bechet C, Louarn L, Reyes M 2010 J. Opt. Soc. Am. 27 A9

    [11]

    William T 2012 Appl. Opt. 51 A11

    [12]

    Daissy H, Garces, William T 2010 Digital Holography and Three-Dimensional Imaging (Miami) DTuB8

    [13]

    Stephen T, Ridgway, Kenneth H 2010 Proc. SPIE 7735 77356Z-1

    [14]

    Kong X X, Huang M, Zhang W X 2012 Acta Opt. Sin. 32 1211001 (in Chinese)[孔新新, 黄旻, 张文喜 2012 光学学报 32 1211001]

    [15]

    Kong X X, Huang M, Zhang W X, Wu Z, Li Y, Zhou Z S 2013 Laser Optoelectron. Prog. 50 011102 (in Chinese)[孔新新, 黄旻, 张文喜, 伍洲, 李扬, 周志盛 2013 激光与光电子学进展 50 011102]

    [16]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽 2015 64 124205]

    [17]

    Chen W, Li Q, Wang Y G 2010 Acta Opt. Sin. 30 3441 (in Chinese)[陈卫, 黎全, 王雁桂 2010 光学学报 30 3441]

    [18]

    Holmes R B, Brinkley T 1996 Proc. SPIE 3815 11

    [19]

    Cuellar E L, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [20]

    Matwyschuk A 2017 Appl. Opt. 56 7766

    [21]

    Mansmann R, Thomson K, Smallwood G, Dreier T, Schulz C 2017 Opt. Express 25 2413

  • [1] 徐华锋, 张兴宇, 王仁杰. 部分相干多离轴涡旋矢量光束的传输特性.  , 2024, 73(3): 034201. doi: 10.7498/aps.73.20231484
    [2] 葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌. 平场复用多焦点结构光照明超分辨显微成像.  , 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [3] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究.  , 2021, (): . doi: 10.7498/aps.70.20211712
    [4] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓. 四光束剪切相干成像目标重构算法研究.  , 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [5] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像.  , 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [6] 赵晓娜, 庄煜昕, 汪中. 相干布居数拍频信号与基态超精细子能级相干性关系的研究.  , 2015, 64(13): 134203. doi: 10.7498/aps.64.134203
    [7] 程志远, 马彩文, 罗秀娟, 张羽, 朱香平, 夏爱利. 抑制孔径间距误差影响的相干场成像质量提升方法研究.  , 2015, 64(12): 124203. doi: 10.7498/aps.64.124203
    [8] 曹蓓, 罗秀娟, 陈明徕, 张羽. 相干场成像全相位目标直接重构法.  , 2015, 64(12): 124205. doi: 10.7498/aps.64.124205
    [9] 曹蓓, 罗秀娟, 司庆丹, 曾志红. 相干场成像四光束相位闭合算法研究.  , 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [10] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究.  , 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [11] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成.  , 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [12] 谭毅, 李新阳. 光束相干合成中填充因子对远场光强分布的影响.  , 2014, 63(9): 094202. doi: 10.7498/aps.63.094202
    [13] 司庆丹, 罗秀娟, 曾志红. 相干场成像原理局限性分析.  , 2014, 63(10): 104203. doi: 10.7498/aps.63.104203
    [14] 张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚. 多艾里光束合成自聚焦光束的实验实现.  , 2013, 62(3): 034209. doi: 10.7498/aps.62.034209
    [15] 邓金平, 季小玲, 陆璐. 多色部分相干偏心光束在non-Kolmogorov湍流中的传输.  , 2013, 62(14): 144211. doi: 10.7498/aps.62.144211
    [16] 相里斌, 张文喜, 伍洲, 吕笑宇, 李杨, 周志盛, 孔新新. 相干场成像技术接收镜精度对传递函数的影响.  , 2013, 62(22): 224201. doi: 10.7498/aps.62.224201
    [17] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究.  , 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [18] 刘冬兵, 程晋明, 祁双喜, 王婉丽, 钱伟新. 部分空间相干和部分光谱相干厄米-高斯脉冲光束的焦场的相干特性.  , 2012, 61(24): 244202. doi: 10.7498/aps.61.244202
    [19] 季小玲. 湍流对部分相干双曲余弦高斯光束的瑞利区间的影响.  , 2011, 60(6): 064207. doi: 10.7498/aps.60.064207
    [20] 徐涵, 常文蔚, 银燕. 尾波场中传播的激光脉冲的频率漂移.  , 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
计量
  • 文章访问数:  5875
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-26
  • 修回日期:  2017-12-09
  • 刊出日期:  2019-02-20

/

返回文章
返回
Baidu
map