Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Frequency conversion sinusoidal chaotic neural network and its application

Hu Zhi-Qiang Li Wen-Jing Qiao Jun-Fei

Citation:

Frequency conversion sinusoidal chaotic neural network and its application

Hu Zhi-Qiang, Li Wen-Jing, Qiao Jun-Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The optimization performance of transiently chaotic neural network (TCNN) is affected by various factors such as chaotic characteristic, model parameters, and annealing function, and its capacity of global optimization is limited. It is demonstrated that the non-monotonic activation function can generate richer chaotic characteristic than the monotonic activation function in the TCNN model. Besides, the activation function involving neurobiological mechanism can not only reflect the rich brain activity in brain waves, but also enhance the non-linear dynamic characteristic, which may further improve the global optimization ability. Hence, a novel chaotic neuron model is proposed with the non-monotonic activation function based on the neurobiological mechanisms from the electroencephalogram. The electroencephalogram consists of five brain waves (i.e., , , , , and waves) which are defined by the quality and intensity of brain waves with different frequency bands ranging from 0.5 Hz to 100 Hz. The brain wave with a higher frequency and a lower amplitude represents a more active brain. Researches demonstrate that the five brain waves can be simplified into sinusoidal waves with different frequencies. Hence, a frequency conversion sinusoidal (FCS) function which has the consistent frequency range and features with brain waves is designed based on the above neurobiological mechanisms. Then a novel chaotic neuron model with non-monotonic activation function which is composed of the FCS function and sigmoid function, is proposed for richer chaotic dynamic characteristic. The reversed bifurcation and the Lyapunov exponent of the chaotic neuron are given and the dynamic system is analyzed, indicating that the proposed FCS neuron model owns richer chaotic dynamic characteristic than transiently chaotic neuron model due to its special non-monotonic activation function. Based on the neuron model, a novel transiently-chaotic neural networkfrequency conversion sinusoidal chaotic neural network (FCSCNN) is constructed and the basis of model parameter selection is provided as well. To validate the effectiveness of the proposed model, the FCSCNN is applied to nonlinear function optimization and 10-city, 30-city, 75-city traveling salesman problem. The experimental results show that 1) the FCSCNN has a good performance under the condition of moderate a, smaller cA(0) and 2(0); 2) on the basis of the appropriate model parameters, the FCSCNN has better global optimization ability and optimization accuracy than Hopfield neural network, TCNN, improved-TCNN due to its richer chaotic characteristic in complicated combinational optimization problem, especially in middle and large scale problem.
      Corresponding author: Hu Zhi-Qiang, zacharyhu33@163.com
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61533002), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225016), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61603009), the China Postdoctoral Science Foundation (Grant No. 2015M570910), the ChaoYang District Postdoctoral Research Foundation, China (Grant No. 2015ZZ-6), and the Basic Research Foundation Project of Beijing University of Technology, China (Grant No. 002000514315501).
    [1]

    Han G, Qiao J F, Han H G, Chai W 2014 J. Control Decis. 29 2085 (in Chinese) [韩广, 乔俊飞, 韩红桂, 柴伟 2014 控制与决策 29 2085]

    [2]

    Yu S J, Huan R S, Zhang J, Feng D 2014 Acta Phys. Sin. 63 060701 (in Chinese) [于舒娟, 宦如松, 张昀, 冯迪 2014 63 060701]

    [3]

    Aihara K, Takabe T, Toyoda M 1990 Phys. Lett. A 144 333

    [4]

    Chen L N, Aihara K 1995 Neural Networks 8 6

    [5]

    Shuai J W, Chen Z X, Liu R T, Wu B X 1996 Phys. Lett. A 221 311

    [6]

    Potapov A, Ali M K 2000 Phys. Lett. A 277 310

    [7]

    Xiu C B, Liu X D, Zhang Y H, Tang Y Y 2005 Acta Electron. Sin. 33 868 (in Chinese) [修春波, 刘向东, 张宇河, 唐运虞 2005 电子学报 33 868]

    [8]

    Xu Y Q, Sun M 2008 Control Theory A 25 574 (in Chinese) [徐耀群, 孙明 2008 控制理论与应用 25 574]

    [9]

    Yi Z, Xu G J, Qin X Z, Jia Z H 2011 Proc. Eng. 24 479

    [10]

    Xu Y Q, Xu N, Liu L J 2012 Appl. Mech. Mater. 151 532

    [11]

    Zhang J H, Xu Y Q 2009 Nat. Sci. 1 204

    [12]

    Zhang Q H Y, Xie X P, Zhu P, Chen H P, He G G 2014 Commun. Nonlinear Sci. 19 2793

    [13]

    Zhang X D, Zhu P, Xie X P 2013 Acta Phys. Sin. 62 210506 (in Chinese) [张旭东, 朱萍, 谢小平, 何国光 2013 62 210506]

    [14]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mec. 61 21

    [15]

    Mirzaei A, Safabakhsh R 2009 Appl. Soft. Comput. 9 863

    [16]

    Qin K 2010 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [秦科 2010 博士学位论文 (成都: 电子科技大学)]

    [17]

    Zhao L, Sun M, Cheng J H, Xu Y Q 2009 IEEE Trans. Neural Networks 20 735

    [18]

    Liu X D, Xiu C B 2007 Neurocomputing 70 2561

    [19]

    Kwok T, Smith K A 1999 IEEE Trans. Neural Networks 10 978

  • [1]

    Han G, Qiao J F, Han H G, Chai W 2014 J. Control Decis. 29 2085 (in Chinese) [韩广, 乔俊飞, 韩红桂, 柴伟 2014 控制与决策 29 2085]

    [2]

    Yu S J, Huan R S, Zhang J, Feng D 2014 Acta Phys. Sin. 63 060701 (in Chinese) [于舒娟, 宦如松, 张昀, 冯迪 2014 63 060701]

    [3]

    Aihara K, Takabe T, Toyoda M 1990 Phys. Lett. A 144 333

    [4]

    Chen L N, Aihara K 1995 Neural Networks 8 6

    [5]

    Shuai J W, Chen Z X, Liu R T, Wu B X 1996 Phys. Lett. A 221 311

    [6]

    Potapov A, Ali M K 2000 Phys. Lett. A 277 310

    [7]

    Xiu C B, Liu X D, Zhang Y H, Tang Y Y 2005 Acta Electron. Sin. 33 868 (in Chinese) [修春波, 刘向东, 张宇河, 唐运虞 2005 电子学报 33 868]

    [8]

    Xu Y Q, Sun M 2008 Control Theory A 25 574 (in Chinese) [徐耀群, 孙明 2008 控制理论与应用 25 574]

    [9]

    Yi Z, Xu G J, Qin X Z, Jia Z H 2011 Proc. Eng. 24 479

    [10]

    Xu Y Q, Xu N, Liu L J 2012 Appl. Mech. Mater. 151 532

    [11]

    Zhang J H, Xu Y Q 2009 Nat. Sci. 1 204

    [12]

    Zhang Q H Y, Xie X P, Zhu P, Chen H P, He G G 2014 Commun. Nonlinear Sci. 19 2793

    [13]

    Zhang X D, Zhu P, Xie X P 2013 Acta Phys. Sin. 62 210506 (in Chinese) [张旭东, 朱萍, 谢小平, 何国光 2013 62 210506]

    [14]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mec. 61 21

    [15]

    Mirzaei A, Safabakhsh R 2009 Appl. Soft. Comput. 9 863

    [16]

    Qin K 2010 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [秦科 2010 博士学位论文 (成都: 电子科技大学)]

    [17]

    Zhao L, Sun M, Cheng J H, Xu Y Q 2009 IEEE Trans. Neural Networks 20 735

    [18]

    Liu X D, Xiu C B 2007 Neurocomputing 70 2561

    [19]

    Kwok T, Smith K A 1999 IEEE Trans. Neural Networks 10 978

  • [1] Li Ru-Yi, Wang Guang-Yi, Dong Yu-Jiao, Zhou Wei. Multi-frequency sinusoidal chaotic neural network and its complex dynamics. Acta Physica Sinica, 2020, 69(24): 240501. doi: 10.7498/aps.69.20200725
    [2] Li Rui-Guo, Zhang Hong-Li, Fan Wen-Hui, Wang Ya. Hermite orthogonal basis neural network based on improved teaching-learning-based optimization algorithm for chaotic time series prediction. Acta Physica Sinica, 2015, 64(20): 200506. doi: 10.7498/aps.64.200506
    [3] Yang Jian, Chen Shu-Shen, Huangfu Hao-Ran, Liang Pei-Peng, Zhong Ning. Dynamic functional connectivity of electroencephalogram in the resting state. Acta Physica Sinica, 2015, 64(5): 058701. doi: 10.7498/aps.64.058701
    [4] Yao Wen-Po, Liu Tie-Bing, Dai Jia-Fei, Wang Jun. Multiscale permutation entropy analysis of electroencephalogram. Acta Physica Sinica, 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [5] Hou Feng-Zhen, Dai Jia-Fei, Liu Xin-Feng, Huang Xiao-Lin. Phase synchrony in the cerebral infarction electroencephalogram based on the degree of network-links. Acta Physica Sinica, 2014, 63(4): 040506. doi: 10.7498/aps.63.040506
    [6] Yu Shu-Juan, Huan Ru-Song, Zhang Yun, Feng Di. Novel improved blind detection algorithms based on chaotic neural networks. Acta Physica Sinica, 2014, 63(6): 060701. doi: 10.7498/aps.63.060701
    [7] Zhang Xu-Dong, Zhu Ping, Xie Xiao-Ping, He Guo-Guang. A dynamic threshold value control method for chaotic neural networks. Acta Physica Sinica, 2013, 62(21): 210506. doi: 10.7498/aps.62.210506
    [8] Li Ling, Jin Zhen-Lan, Li Bin. Spatiotemporal dynamic analysis of phase synchronized sources based on factor analysis. Acta Physica Sinica, 2011, 60(4): 048703. doi: 10.7498/aps.60.048703
    [9] Ma Qian-Li, Bian Chun-Hua, Wang Jun. Scaling analysis on electroencephalogram and its application to sleep-staging. Acta Physica Sinica, 2010, 59(7): 4480-4484. doi: 10.7498/aps.59.4480
    [10] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [11] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [12] Lou Xu-Yang, Cui Bao-Tong. Anti-synchronization of chaotic delayed neural networks. Acta Physica Sinica, 2008, 57(4): 2060-2067. doi: 10.7498/aps.57.2060
    [13] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [14] Analysis of functional brain network based on electroencephalogram. Acta Physica Sinica, 2007, 56(12): 7330-7338. doi: 10.7498/aps.56.7330
    [15] He Guo-Guang, Zhu Ping, Chen Hong-Ping, Cao Zhi-Tong. Study on the delayed feedback control of chaos in chaotic neural networks. Acta Physica Sinica, 2006, 55(3): 1040-1048. doi: 10.7498/aps.55.1040
    [16] Wang Zhan-Shan, Zhang Hua-Guang, Wang Zhi-Liang. Global synchronization of a class of chaotic neural networks. Acta Physica Sinica, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [17] Liu Guang-Jie, Shan Liang, Dai Yue-Wei, Sun Jin-Sheng, Wang Zhi-Quan. One-way Hash function based on chaotic neural network. Acta Physica Sinica, 2006, 55(11): 5688-5693. doi: 10.7498/aps.55.5688
    [18] Yu Ling-Hui, Fang Jian-Cheng. Synchronization of chaotic neural networks based on adaptive inverse control and its applications in secure communications. Acta Physica Sinica, 2005, 54(9): 4012-4018. doi: 10.7498/aps.54.4012
    [19] Ren Hai-Peng, Liu Ding. . Acta Physica Sinica, 2002, 51(5): 982-987. doi: 10.7498/aps.51.982
    [20] HE GUO-GUANG, CAO ZHI-TONG. CONTROLLING CHAOS IN CHAOTIC NEURAL NETWORK. Acta Physica Sinica, 2001, 50(11): 2103-2107. doi: 10.7498/aps.50.2103
Metrics
  • Abstract views:  6333
  • PDF Downloads:  527
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2017
  • Accepted Date:  07 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map