Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of ZnO nanowire-silicon pyramid hierarchical structure, and its self-cleaning

Wu Yi-Zhi Xu Xiao-Liang

Citation:

Fabrication of ZnO nanowire-silicon pyramid hierarchical structure, and its self-cleaning

Wu Yi-Zhi, Xu Xiao-Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The transmittance diminishment of solar cells, caused by dust accumulation is higher than 52.54% every year (2006 Energ. Convers. Manage. 47 3192), which greatly reduces their overall efficiencies of power conversion. Any other strategy for improving the photovoltaic device cannot compensate for this loss caused by the dust. However, this critical issue has not received much attention. In this work, a kind of self-cleaning coating consisting of ZnO nanowire-silicon pyramid hierarchical structures is proposed to overcome the dust accumulation on the photovoltaic device. The principle of designing this self-cleaning is based on the Cassie-Baxter theory. Both the micron size effect for superhydrophobicity and the performance of anti-reflection of light of the substrate should be retained, which are the requirements of application of solar cell. The pyramid-like silicon (named silicon pyramid, hereafter) is fabricated by simple chemical etching. The effects of isopropanol, KOH, etching time, and etching temperature on the morphology of the silicon pyramid are investigated by using systematic statistical design and analysis method, to obtain the best distribution and size of the silicon pyramid. In the systematic statistical design and analysis method, the pick-the-winner rule is adopted. Eventually, we find that the optimized conditions for etching silicon pyramid (according the requirements of self-clean) are as follows: etching time is 60 min, etching temperature is 95℃, and mixture is 80 mL DI water, 2.9598 g KOH and 20 mL isopropanol. Moreover, ZnO nanowire-silicon pyramid hierarchical structures for the application of photovoltaic device are successfully hydrothermally grown on the substrate of silicon pyramid for the first time. The obtained self-cleaning coating consists of ZnO nanowire (with a diameter of 136 nm) and silicon pyramid (with a size of 8-11 m). The surface of this coating possesses superhydrophobic properties, i.e., a water contact angle of 154 and a contact angle hysteresis of less than 10, after being modified by heptadecafluorodecyltrimethoxysilane. Also, our obtained ZnO nanowire-silicon pyramid hierarchical structures have quite a good performance of anti-reflection, which appear gray in the normal environment. And the mechanism for it is postulated. Importantly, some new phenomena, such as high temperature improving the growth of silicon pyramid, are also revealed. Besides, the physical mechanism for high temperature improving the growth of silicon pyramid and anisotropic etching of silicon substrate is discussed. It is indicated that the anisotropic behavior is attributed to small difference in energy level (being a function of the crystal orientation) between the back-bond surface states. The method we proposed to achieve self-cleaning coating is versatile, reliable and low-cost, which is also compatible with contemporary micro-and nano-fabrication processes.
      Corresponding author: Wu Yi-Zhi, wuyizhi@tjpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504264).
    [1]

    Elminir H K, Ghitas A E, Hamid R H, El-Hussainy F, Beheary M M, Abdel-Moneim K M 2006 Energ. Convers. Manage. 47 3192

    [2]

    Guo Z, Chen X, Li J, Liu J H, Huang X J 2011 Langmuir 27 6193

    [3]

    Gong M G, Xu X L, Yang Z, Liu Y Y, L H F, L L 2009 Nanotechnology 20 165602

    [4]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [5]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [6]

    Wang H J, Yu J, Wu Y Z, Shao W J, Xu X L 2014 J. Mater. Chem. A 2 5010

    [7]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [8]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [9]

    Inomata Y, Fukui K, Shirasawa K 1997 Sol. Energ. Mat. Sol. C 48 237

    [10]

    Xiu Y, Zhu L, Hess D W, Wong C P 2007 Nano Lett. 7 3388

    [11]

    Baek S, Kang G, Kang M, Lee C W, Kim K 2016 Sci. Rep. 6 1

    [12]

    Zhou C L, Wang W J, Zhao L, Li H L, Diao H W, Cao X N 2010 Acta Phys. Sin. 59 5777 (in Chinese) [周春兰, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁 2010 59 5777]

    [13]

    Xi Z Q, Yang D R, Que D L 2003 Sol. Energ. Mat. Sol. C 77 255

    [14]

    Xi Z Q, Yang D R, Dan W, Jun C, Li X H, Que D L 2004 Renew. Energ. 29 2101

    [15]

    Tian J T, Feng S M, Wang K X, Xu H T, Yang S Q, Liu F, Huang J H, Pei J 2012 Acta Phys. Sin. 61 066803 (in Chinese) [田嘉彤, 冯仕猛, 王坤霞, 徐华天, 杨树泉, 刘峰, 黄建华, 裴俊 2012 61 066803]

    [16]

    Pan S, Feng S M 2012 Semicond. Optoelectron. 33 214 (in Chinese) [潘盛, 冯仕猛 2012 半导体光电 33 214]

    [17]

    Zhang T R, Dong W J, Keeter-Brewer, M, Konar S, Njabon R N, Tian Z R 2006 J. Am. Chem. Soc. 128 10960

    [18]

    Wang Z L, Song J H 2006 Science 312 242

    [19]

    Lincot D 2010 MRS Bull. 35 778

    [20]

    Saito N, Haneda H 2011 Sci. Technol. Adv. Mat. 12 064707

    [21]

    Xu S, Wang Z L 2011 Nano Res. 4 1013

    [22]

    Wang Z W, Cai J Q, Wu Y Z, Wang H J, Xu X L 2015 Chin. Phys. B 24 017802

    [23]

    Baxter S, Cassie A B D 1945 J. Textile Institute Trans. 36 T67

    [24]

    Nishimoto Y, Namba K 2000 Sol. Energ. Mat. Sol. C 61 393

    [25]

    Seidel H, Csepregi L, Heuberger A, Baumgrtel H 1990 J. Electrochem. Soc. 137 3612

    [26]

    Liu Y, Lin Z Y, Lin W, Moon K S, Wong C P 2012 ACS Appl. Mater. Int. 4 3959

    [27]

    Gao Y Q, Gereige I, El Labban A, Cha D, Isimjan T T, Beaujuge P M 2014 ACS Appl. Mater. Int. 6 2219

    [28]

    Chen X H, Bin Yang G, Kong L H, Dong D, Yu L G, Chen J M, Zhang P Y 2009 Cryst. Growth Des. 9 2656

    [29]

    Wang H, Yang Z, Yu J, Wu Y, Shao W, Jiang T, Xu X 2014 Rsc Adv. 4 33730

  • [1]

    Elminir H K, Ghitas A E, Hamid R H, El-Hussainy F, Beheary M M, Abdel-Moneim K M 2006 Energ. Convers. Manage. 47 3192

    [2]

    Guo Z, Chen X, Li J, Liu J H, Huang X J 2011 Langmuir 27 6193

    [3]

    Gong M G, Xu X L, Yang Z, Liu Y Y, L H F, L L 2009 Nanotechnology 20 165602

    [4]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [5]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [6]

    Wang H J, Yu J, Wu Y Z, Shao W J, Xu X L 2014 J. Mater. Chem. A 2 5010

    [7]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [8]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [9]

    Inomata Y, Fukui K, Shirasawa K 1997 Sol. Energ. Mat. Sol. C 48 237

    [10]

    Xiu Y, Zhu L, Hess D W, Wong C P 2007 Nano Lett. 7 3388

    [11]

    Baek S, Kang G, Kang M, Lee C W, Kim K 2016 Sci. Rep. 6 1

    [12]

    Zhou C L, Wang W J, Zhao L, Li H L, Diao H W, Cao X N 2010 Acta Phys. Sin. 59 5777 (in Chinese) [周春兰, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁 2010 59 5777]

    [13]

    Xi Z Q, Yang D R, Que D L 2003 Sol. Energ. Mat. Sol. C 77 255

    [14]

    Xi Z Q, Yang D R, Dan W, Jun C, Li X H, Que D L 2004 Renew. Energ. 29 2101

    [15]

    Tian J T, Feng S M, Wang K X, Xu H T, Yang S Q, Liu F, Huang J H, Pei J 2012 Acta Phys. Sin. 61 066803 (in Chinese) [田嘉彤, 冯仕猛, 王坤霞, 徐华天, 杨树泉, 刘峰, 黄建华, 裴俊 2012 61 066803]

    [16]

    Pan S, Feng S M 2012 Semicond. Optoelectron. 33 214 (in Chinese) [潘盛, 冯仕猛 2012 半导体光电 33 214]

    [17]

    Zhang T R, Dong W J, Keeter-Brewer, M, Konar S, Njabon R N, Tian Z R 2006 J. Am. Chem. Soc. 128 10960

    [18]

    Wang Z L, Song J H 2006 Science 312 242

    [19]

    Lincot D 2010 MRS Bull. 35 778

    [20]

    Saito N, Haneda H 2011 Sci. Technol. Adv. Mat. 12 064707

    [21]

    Xu S, Wang Z L 2011 Nano Res. 4 1013

    [22]

    Wang Z W, Cai J Q, Wu Y Z, Wang H J, Xu X L 2015 Chin. Phys. B 24 017802

    [23]

    Baxter S, Cassie A B D 1945 J. Textile Institute Trans. 36 T67

    [24]

    Nishimoto Y, Namba K 2000 Sol. Energ. Mat. Sol. C 61 393

    [25]

    Seidel H, Csepregi L, Heuberger A, Baumgrtel H 1990 J. Electrochem. Soc. 137 3612

    [26]

    Liu Y, Lin Z Y, Lin W, Moon K S, Wong C P 2012 ACS Appl. Mater. Int. 4 3959

    [27]

    Gao Y Q, Gereige I, El Labban A, Cha D, Isimjan T T, Beaujuge P M 2014 ACS Appl. Mater. Int. 6 2219

    [28]

    Chen X H, Bin Yang G, Kong L H, Dong D, Yu L G, Chen J M, Zhang P Y 2009 Cryst. Growth Des. 9 2656

    [29]

    Wang H, Yang Z, Yu J, Wu Y, Shao W, Jiang T, Xu X 2014 Rsc Adv. 4 33730

  • [1] Xiao Si, Qin Ying-Lin, Wang Hui, Wang Peng, Ma Hai-Ming, He Jun, Wang Ying-Wei. Mechanical behaviors of radial symmetric pyramid kirigami. Acta Physica Sinica, 2020, 69(9): 096102. doi: 10.7498/aps.69.20200112
    [2] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [3] Chen Quan-Sheng, Liu Yao-Ping, Chen Wei, Zhao Yan, Wu Jun-Tao, Wang Yan, Du Xiao-Long. Different silicon crystal face index of inverted pyramid structure. Acta Physica Sinica, 2018, 67(22): 226801. doi: 10.7498/aps.67.20181275
    [4] Zhang Wei-Yi, Hu Ming, Liu Xing, Li Na, Yan Wen-Jun. Synthesis and gas-sensing properties of the silicon nanowires/vanadium oxide nanorods composite. Acta Physica Sinica, 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [5] Qi Jun-Jie, Xu Min-Xuan, Hu Xiao-Feng, Zhang Yue. Frabrication and properties of self-powered ultraviolet detectors based on one-demensional ZnO nanomaterials. Acta Physica Sinica, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [6] Zhang Jian-Hui, Han Ji-Gang. Tuning the photoluminescence, magnetism and cytotoxicity of ZnO by tailoring the nanostructures. Acta Physica Sinica, 2015, 64(9): 097702. doi: 10.7498/aps.64.097702
    [7] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [8] Qiu Kang-Sheng, Zhao Yan-Hui, Liu Xiang-Bo, Feng Bao-Hua, Xu Xiu-Lai. Whispering gallery modes in a bent ZnO microwire. Acta Physica Sinica, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [9] Hu Jie, Deng Xiao, Sang Sheng-Bo, Li Peng-Wei, Li Gang, Zhang Wen-Dong. Fabrication and characteristics of ZnO nanowires array gas sensor based on microfluidics. Acta Physica Sinica, 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [10] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [11] Wang Le, Liu Yang, Xu Guo-Tang, Li Xiao-Yan, Dong Qian-Min, Huang Jie, Liang Pei. First-principles study on the sensitization of small molecule adsorbed on ZnO nanowire. Acta Physica Sinica, 2012, 61(6): 063103. doi: 10.7498/aps.61.063103
    [12] Zhang Jin-Ling, Lü Ying-Hua, La Dong-Sheng, Liao Lei, Bai Xue-Dong. Ultraviolet light-enhanced field electron emission of zinc oxide nanowires. Acta Physica Sinica, 2012, 61(12): 128503. doi: 10.7498/aps.61.128503
    [13] Qin Jie-Ming, Tian Li-Fei, Zhao Dong-Xu, Jiang Da-Yong, Cao Jian-Ming, Ding Meng, Guo Zhen. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [14] Liu Qiang, Fang Jin-Qing, Li Yong. Complexity of multi-architecture type of deterministic weighted generalized Farey organized network pyramid. Acta Physica Sinica, 2010, 59(6): 3704-3714. doi: 10.7498/aps.59.3704
    [15] Li Yong, Fang Jin-Qing, Liu Qiang. Determinate generalized Farey organized network pyramid. Acta Physica Sinica, 2010, 59(5): 2991-3000. doi: 10.7498/aps.59.2991
    [16] Wang Jian, Li Hui-Feng, Huang Yun-Hua, Yu Hai-Bo, Zhang Yue. Microwave absorbing properties of composite coating by carbon nanotube and nanoscaled tetrapod-shaped ZnO. Acta Physica Sinica, 2010, 59(3): 1946-1951. doi: 10.7498/aps.59.1946
    [17] Zhou Chun-Lan, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. Preparation and characterization of homogeneity and fine pyramids on the textured single silicon crystal. Acta Physica Sinica, 2010, 59(8): 5777-5783. doi: 10.7498/aps.59.5777
    [18] Li Hui-Feng, Gao Xiang-Xi, Huang Yun-Hua, Wang Jian, Zhang Yue, Zhao Jing. Fabrication and characterization of In-doped zinc oxide nanoarrays. Acta Physica Sinica, 2009, 58(4): 2702-2706. doi: 10.7498/aps.58.2702
    [19] Sun Hui, Zhang Qi-Feng, Wu Jin-Lei. Ultraviolet light emitting diode based on ZnO nanowires. Acta Physica Sinica, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [20] Yao Zhi-Tao, Sun Xin-Rui, Xu Hai-Jun, Jiang Wei-Fen, Xiao Shun-Hua, Li Xin-Jian. The structure and photoluminescence properties of ZnO/silicon nanoporous pillar array. Acta Physica Sinica, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
Metrics
  • Abstract views:  6484
  • PDF Downloads:  293
  • Cited By: 0
Publishing process
  • Received Date:  09 January 2017
  • Accepted Date:  27 January 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map