搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维纳米氧化锌自驱动紫外探测器的构建与性能研究

齐俊杰 徐旻轩 胡小峰 张跃

引用本文:
Citation:

一维纳米氧化锌自驱动紫外探测器的构建与性能研究

齐俊杰, 徐旻轩, 胡小峰, 张跃

Frabrication and properties of self-powered ultraviolet detectors based on one-demensional ZnO nanomaterials

Qi Jun-Jie, Xu Min-Xuan, Hu Xiao-Feng, Zhang Yue
PDF
导出引用
  • 本文通过化学气相沉积法制备了ZnO纳米材料, 利用扫描电镜、光致发光谱、X衍射光谱及拉曼光谱等方法对制备的材料进行了表征. 基于制备的单根ZnO线分别构建了三种不同结构的紫外探测器件: Ag-ZnO-Ag肖特基型、PEDOT:PSS/n-ZnO结型和p-Si/n-ZnO结型紫外探测器, 并对器件的性能进行了研究. 结果表明: 三种不同结构的器件都表现出良好的整流特性, 对紫外线均有明显的光响应; 在零偏压下, 都有明显的自驱动特性. 三种器件中, p-Si/n-ZnO型紫外探测器性能最为优异: 在零偏压下, 暗电流约在1.210-3 nA, 光电流在5.4 nA左右, 光暗电流比为4.5103, 上升和下降时间分别为0.7 s和1 s. 通过三类器件性能比较, 表明无机p-Si更适合与ZnO构建pn结型自驱动紫外探测器.
    ZnO micro/nanowires were synthesized by chemical vapor deposition method. The morphology and structure of the products have been characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL) and micro-Raman scattering spectrometer, etc. Results show that the surface of the highly uniform ZnO wire is smooth and the as-synthesized ZnO wires show high crystal quality. Three types of UV detector are constructed using a single ZnO nanowire with different contact characteristics, and their corresponding performances are investigated systematically by using Keithley 4200-SCS and other equipments. All of the three different devices exhibit good rectifying characters and significant responsivity to ultraviolet light. The devices show self-driven features at zero bias. Compared with the devices made from Schottky contact and ZnO/PEDOT:PSS film, the present single ZnO nanowire/p-Si film devices with heterojunctions have the best self-powered function, which can be attributed to the stronger built-in electric field as well as the smaller dark current due to the insulating layer on the p-Si film. At zero bias, the fabricated ZnO nanowire/p-Si film device can deliver a dark current of 1.210-3 nA and a high photosensitivity of about 4.5103 under UV illumination. The response of the devices made from ZnO nanowire/p-Si film to UV illumination in air is pretty fast with the rise time of about 0.7 s and the fall time of about 1 s, which could be attributed to the fact that the photo-generated electron-hole pairs in the depletion layer is quickly separated by the built-in electric field, leading to a rapid response speed and a larger photocurrent. Comparison among the three kinds of devices indicates that the devices made from ZnO nanowire/p-Si film are the best candidate for UV detectors.
      通信作者: 齐俊杰, junjieqi@ustb.edu.cn;yuezhang@ustb.edu.cn ; 张跃, junjieqi@ustb.edu.cn;yuezhang@ustb.edu.cn
    • 基金项目: 本工作由重大科学研究计划(批准号: 2013CB932601)、国际科技合作专项项目(批准号: 2012DFA50990), 国家自然科学基金(批准号: 51232001, 51172022)、北京市教委共建项目及长江团队项目资助的课题.
      Corresponding author: Qi Jun-Jie, junjieqi@ustb.edu.cn;yuezhang@ustb.edu.cn ; Zhang Yue, junjieqi@ustb.edu.cn;yuezhang@ustb.edu.cn
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 2013CB932601), the Special Projects of International Cooperation in Science and Technology (Grant No. 2012DFA50990), the National Natural Science Foundation of China (Grant Nos. 51232001, 51172022), and the Beijing municipal education commission project and the Yangtze river team project.
    [1]

    Lee C H, Kim Y J, Lee J, Hong Y J, Jeon J M, Kim M, Hong S, Yi G C 2011 Nanotechnology 22 055205

    [2]

    Jang E S, Won J H, Kim Y W, Chen X Y, Choy J H 2010 Cryst. Eng. Comm. 12 3467

    [3]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]

    [4]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104

    [5]

    Das S N, Moon K J, Kar J P, Choi J H, Xiong J J 2010 Appl. Phys. Lett. 97 022103

    [6]

    Dai Y, Zhang Y, Li Q K, Nan C W 2002 Chem. Phys. Lett. 358 83

    [7]

    Dai Y, Zhang Y, Bai Y Q, Wang Z L 2003 Chem. Phys. Lett. 375 96

    [8]

    Chen H S, Qi J J, Zhang Y, Zhang X M, Liao Q L, Huang Y H 2007 Appl. Surf. Sci. 253 8901

    [9]

    Wang Z L, Poncharal P, De Heer W A 2000 Pure appl. Chem. 72 209

    [10]

    Poncharal P, Wang Z L, Ugarte D 1999 Sci. 283 1513

    [11]

    Heo Y W, Tien L C, Norton D P 2004 Appl. Phys. Lett. 85 2002

    [12]

    Yang Y, Qi J J, Liao Q L 2009 Appl. Phys. Lett. 95 123112

    [13]

    Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, Wang D 2007 Nano Lett. 7 1003

    [14]

    Jha S K, Liu C P, Chen Z H, Chen K J, Bello I, Zapien J A, Zhang W J, Lee S T 2010 J. Phys. Chem. C 114 7999

    [15]

    Lin W, Yan X, Zhang X 2011 Solid State Commun. 151 1860

    [16]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 61 052901]

    [17]

    Yang Y, Guo W, Qi J, Zhang Y 2010 Appl. Phys. Lett. 97 223113

    [18]

    Bai Z M, Yan X Q, Chen X, Liu H S, Shen Y W, Zhang Y 2013 Curr. Appl. Phys. 13 165

    [19]

    Zhou J, Gu Y, Hu Y, Mai W, Yeh P H, Bao G, Sood A K, Polla D J, Wang Z L 2009 Appl. Phys. Len. 94 191103

    [20]

    Kamiya T, Tajima K, Nomura K 2008 Phys. Status Solidi 205 1929

    [21]

    Wu C X, Zhou M, Feng C C, Yuan R, Li G, Ma W W, Cai L 2008 Acta Phys. Sin. 57 3887 (in Chinese) [吴春霞, 周明, 冯程程, 袁润, 李刚, 马伟伟, 蔡兰 2008 57 3887]

    [22]

    Chen K J, Hung F Y, Chang S J, Young S J 2009 J. Alloy Compd 479 674

    [23]

    Fang F, Zhao D X, Li B H, Zhang Z Z, Shen D Z, Wang X H 2010 J. Phys. Chem. C 114 12477

  • [1]

    Lee C H, Kim Y J, Lee J, Hong Y J, Jeon J M, Kim M, Hong S, Yi G C 2011 Nanotechnology 22 055205

    [2]

    Jang E S, Won J H, Kim Y W, Chen X Y, Choy J H 2010 Cryst. Eng. Comm. 12 3467

    [3]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]

    [4]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104

    [5]

    Das S N, Moon K J, Kar J P, Choi J H, Xiong J J 2010 Appl. Phys. Lett. 97 022103

    [6]

    Dai Y, Zhang Y, Li Q K, Nan C W 2002 Chem. Phys. Lett. 358 83

    [7]

    Dai Y, Zhang Y, Bai Y Q, Wang Z L 2003 Chem. Phys. Lett. 375 96

    [8]

    Chen H S, Qi J J, Zhang Y, Zhang X M, Liao Q L, Huang Y H 2007 Appl. Surf. Sci. 253 8901

    [9]

    Wang Z L, Poncharal P, De Heer W A 2000 Pure appl. Chem. 72 209

    [10]

    Poncharal P, Wang Z L, Ugarte D 1999 Sci. 283 1513

    [11]

    Heo Y W, Tien L C, Norton D P 2004 Appl. Phys. Lett. 85 2002

    [12]

    Yang Y, Qi J J, Liao Q L 2009 Appl. Phys. Lett. 95 123112

    [13]

    Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, Wang D 2007 Nano Lett. 7 1003

    [14]

    Jha S K, Liu C P, Chen Z H, Chen K J, Bello I, Zapien J A, Zhang W J, Lee S T 2010 J. Phys. Chem. C 114 7999

    [15]

    Lin W, Yan X, Zhang X 2011 Solid State Commun. 151 1860

    [16]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 61 052901]

    [17]

    Yang Y, Guo W, Qi J, Zhang Y 2010 Appl. Phys. Lett. 97 223113

    [18]

    Bai Z M, Yan X Q, Chen X, Liu H S, Shen Y W, Zhang Y 2013 Curr. Appl. Phys. 13 165

    [19]

    Zhou J, Gu Y, Hu Y, Mai W, Yeh P H, Bao G, Sood A K, Polla D J, Wang Z L 2009 Appl. Phys. Len. 94 191103

    [20]

    Kamiya T, Tajima K, Nomura K 2008 Phys. Status Solidi 205 1929

    [21]

    Wu C X, Zhou M, Feng C C, Yuan R, Li G, Ma W W, Cai L 2008 Acta Phys. Sin. 57 3887 (in Chinese) [吴春霞, 周明, 冯程程, 袁润, 李刚, 马伟伟, 蔡兰 2008 57 3887]

    [22]

    Chen K J, Hung F Y, Chang S J, Young S J 2009 J. Alloy Compd 479 674

    [23]

    Fang F, Zhao D X, Li B H, Zhang Z Z, Shen D Z, Wang X H 2010 J. Phys. Chem. C 114 12477

  • [1] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍. NiO/GaN p-n结紫外探测器及自供电技术.  , 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [2] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响.  , 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [3] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕. 片上制备横向结构ZnO纳米线阵列紫外探测器件.  , 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [4] 李玉金, 元秀华, 赵茗, 王运河. 环形ZnO薄膜谐振器的横模抑制与测试分析(已撤稿.  , 2015, 64(22): 224601. doi: 10.7498/aps.64.224601
    [5] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究.  , 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [6] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性.  , 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [7] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性.  , 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [8] 崔秀芝, 张天冲, 梅增霞, 刘章龙, 刘尧平, 郭阳, 苏希玉, 薛其坤, 杜小龙. 湿法刻蚀对Si基片孔点阵及ZnO外延薄膜周期形貌的影响.  , 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [9] 严国清, 谢凯旋, 莫仲荣, 路忠林, 邹文琴, 王申, 岳凤娟, 吴镝, 张凤鸣, 都有为. 共沉淀法制备Co掺杂ZnO的室温铁磁性的研究.  , 2009, 58(2): 1237-1241. doi: 10.7498/aps.58.1237
    [10] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [11] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究.  , 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [12] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [13] 周 梅, 常清英, 赵德刚. 一种减小GaN基肖特基结构紫外探测器暗电流的方法.  , 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [14] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应.  , 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [15] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究.  , 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [16] 周 梅, 左淑华, 赵德刚. 一种新型GaN基肖特基结构紫外探测器.  , 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [17] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究.  , 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [18] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究.  , 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [19] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究.  , 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [20] 袁洪涛, 张 跃, 谷景华. 原位生长高度定向ZnO晶须.  , 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
计量
  • 文章访问数:  7036
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-03
  • 修回日期:  2015-04-07
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map