搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同硅晶面指数上的类倒金字塔结构研究与分析

陈全胜 刘尧平 陈伟 赵燕 吴俊桃 王燕 杜小龙

引用本文:
Citation:

不同硅晶面指数上的类倒金字塔结构研究与分析

陈全胜, 刘尧平, 陈伟, 赵燕, 吴俊桃, 王燕, 杜小龙

Different silicon crystal face index of inverted pyramid structure

Chen Quan-Sheng, Liu Yao-Ping, Chen Wei, Zhao Yan, Wu Jun-Tao, Wang Yan, Du Xiao-Long
PDF
导出引用
  • 晶体硅作为一种重要的半导体材料,在集成电路、太阳能电池等方面具有广泛的应用.基于各向异性的刻蚀方法,不同晶面指数的硅都可以在表面形成由{111}晶面族组成的正/倒金字塔.本文基于{111}晶面族与(abc)晶面相交构成类倒金字塔结构的特性,建立了硅的晶面指数(abc)与所形成的类倒金字塔结构的数学模型.将硅的晶面指数(abc)分成0≤a≤bc,0≤ab=c,a=b=c三种情况进行讨论,分别得到不同晶面指数的类倒金字塔结构.实验结果的扫描电子显微镜图证实了理论计算的准确性.晶面指数与类倒金字塔结构具有一一对应的关系,因此可以根据各向异性刻蚀后的类倒金字塔结构,进行硅的晶面指数进行检测.
    As a kind of important semiconductor material, crystalline silicon has vast applications in many industries, such as integrated circuits and solar cells. With anisotropic etching method, including alkali etching and copper assisted catalytic etching, pyramid or inverted pyramid structure on the surface of silicon can be formed due to different crystal face indices of the silicon wafer, which is especially for multi-crystalline silicon wafers, because there are many different crystal faces on the surface. The proportion of different crystal faces has a high reference value for controlling the quality of multi-crystalline silicon. In this paper, the mathematical model of the inverted pyramid structure is established by making use of the relationship between the silicon crystal indices (abc) and {111} crystal plane. The inverted pyramid structures with different crystal face index (abc) values are divided into three possible cases for discussion, which are 0≤a≤bc, 0≤ab=c, a=b=c. The inverted pyramid structure on which the crystal face index (abc) satisfies 0≤a≤bc is of a pentahedron composed of five points and has a quadrangular cross section. The inverted pyramid structure in which the crystal face index (abc) satisfies 0≤ab=c is of a heptahedron composed of eight points and has a hexagonal cross section. The inverted pyramid structure whose crystal plane index (abc) satisfies a=b=c=1 is also of a heptahedron and has a hexagonal cross section but is composed of nine points. In general, the cross section of the (111) crystal face inverted pyramid is similar to an equilateral triangle because three of the edges are easier to etch away. The scanning electron microscopy image results show that the crystal indices are (100), (110) and (111), thereby demonstrating the correctness of the theoretical calculations. The index of crystal face has a one-to-one correspondence relationship with the inverted pyramid structure. Therefore, according to the inverted pyramid structure after anisotropic etching, we can measure the index of Si crystal face.
      通信作者: 杜小龙, xldu@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11675280,11674405)和江苏省科技成果转化项目(批准号:BA2017137)资助的课题.
      Corresponding author: Du Xiao-Long, xldu@iphy.ac.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 11675280, 11674405) and the Technological Achievements Transformation Project of the Science and Technology Department of Jiangsu Province, China (Grant No. BA2017137).
    [1]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 307

    [2]

    Yagi T, Uraoka Y, Fuyuki T 2006 Sol. Energy Mater. Sol. Cells 90 2647

    [3]

    Abdullah M F, Alghoul M A, Naser H, Asim N, Ahmadi S, Yatim B, Sopian K 2016 Renew. Sustain. Energy Rev. 66 380

    [4]

    Zha J, Wang T, Pan C, Chen K, Hu F, Pi X, Su X 2017 Appl. Phys. Lett. 110 093901

    [5]

    Zhao J, Wang A, Green M A, Ferrazza F 1998 Appl. Phys. Lett. 73 1991

    [6]

    González-Díaz B, Guerrero-Lemus R, Díaz-Herrera B, Marrero N, Méndez-Ramos J, Borchert D 2017 J. Nanjing Univ. Aeronaut. Aeronaut. 49 744 (in Chinese) [沈鸿烈, 蒋晔 2017 南京航空航天大学学报 49 744]

    [7]

    Park H, Kwon S, Lee J S, Lim H J, Yoon S, Kim D 2009 Sol. Energy Mater. Sol. Cells 93 1773

    [8]

    Zhong S, Wang W, Zhuang Y, Huang Z, Shen W 2016 Adv. Funct. Mater. 26 4768

    [9]

    Wang Y, Yang L, Liu Y, Mei Z, Chen W, Li J, Liang H, Kuznetsov A, Du X 2015 Sci. Rep. 5 10843

    [10]

    Yang L, Liu Y, Wang Y, Chen W, Chen Q, Wu J, Kuznetsov A, Du X 2017 Sol. Energy Mater. Sol. Cells 166 121

    [11]

    Zhao J, Wang A, Altermatt P, Green M A 1995 Appl. Phys. Lett. 66 3636

    [12]

    Jiang Y, Shen H, Pu T, Zheng C, Tang Q, Gao K, Wu J, Rui C, Li Y, Liu Y 2017 Sol. Energy 142 91

    [13]

    Shen H L, Jiang Y 2017 J. Nanjing Univ. Aeronaut. Aeronaut. 49 744 (in Chinese) [沈鸿烈, 蒋晔 2017 南京航空航天大学学报 49 744]

    [14]

    Geng C, Zhen Y, Zhang Y Z, Yan H 2016 Acta Phys. Sin. 65 070201 (in Chinese) [耿超, 郑义, 张永哲, 严辉 2016 65 070201]

    [15]

    Wang K X, Feng S M, Xu H T, Tian J T, Yang S Q, Huang J H, Pei J 2012 Sci. Sin.: Technol. 42 643 (in Chinese) [王坤霞, 冯仕猛, 徐华天, 田嘉彤, 杨树泉, 黄建华, 裴骏 2012 中国科学: 技术科学 42 643]

    [16]

    Tang Q, Shen H, Yao H, Gao K, Jiang Y, Yang W, Liu Y 2018 Sol. Energy 170 263

    [17]

    Wang P, Xiao S, Jia R, Sun H, Dai X, Su G, Tao K 2018 Sol. Energy 169 153

    [18]

    Campbell P, Wenham S R, Green M A 1993 Sol. Energy Mater. Sol. Cells 31 133

    [19]

    Chen W, Liu Y, Yang L, Wu J, Chen Q, Zhao Y, Wang Y, Du X 2018 Sci. Rep. 8 3408

    [20]

    Wu J, Liu Y, Chen Q, Chen W, Yang L, Wang Y, He M, Du X 2018 Sol. Energy 171 675

  • [1]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 307

    [2]

    Yagi T, Uraoka Y, Fuyuki T 2006 Sol. Energy Mater. Sol. Cells 90 2647

    [3]

    Abdullah M F, Alghoul M A, Naser H, Asim N, Ahmadi S, Yatim B, Sopian K 2016 Renew. Sustain. Energy Rev. 66 380

    [4]

    Zha J, Wang T, Pan C, Chen K, Hu F, Pi X, Su X 2017 Appl. Phys. Lett. 110 093901

    [5]

    Zhao J, Wang A, Green M A, Ferrazza F 1998 Appl. Phys. Lett. 73 1991

    [6]

    González-Díaz B, Guerrero-Lemus R, Díaz-Herrera B, Marrero N, Méndez-Ramos J, Borchert D 2017 J. Nanjing Univ. Aeronaut. Aeronaut. 49 744 (in Chinese) [沈鸿烈, 蒋晔 2017 南京航空航天大学学报 49 744]

    [7]

    Park H, Kwon S, Lee J S, Lim H J, Yoon S, Kim D 2009 Sol. Energy Mater. Sol. Cells 93 1773

    [8]

    Zhong S, Wang W, Zhuang Y, Huang Z, Shen W 2016 Adv. Funct. Mater. 26 4768

    [9]

    Wang Y, Yang L, Liu Y, Mei Z, Chen W, Li J, Liang H, Kuznetsov A, Du X 2015 Sci. Rep. 5 10843

    [10]

    Yang L, Liu Y, Wang Y, Chen W, Chen Q, Wu J, Kuznetsov A, Du X 2017 Sol. Energy Mater. Sol. Cells 166 121

    [11]

    Zhao J, Wang A, Altermatt P, Green M A 1995 Appl. Phys. Lett. 66 3636

    [12]

    Jiang Y, Shen H, Pu T, Zheng C, Tang Q, Gao K, Wu J, Rui C, Li Y, Liu Y 2017 Sol. Energy 142 91

    [13]

    Shen H L, Jiang Y 2017 J. Nanjing Univ. Aeronaut. Aeronaut. 49 744 (in Chinese) [沈鸿烈, 蒋晔 2017 南京航空航天大学学报 49 744]

    [14]

    Geng C, Zhen Y, Zhang Y Z, Yan H 2016 Acta Phys. Sin. 65 070201 (in Chinese) [耿超, 郑义, 张永哲, 严辉 2016 65 070201]

    [15]

    Wang K X, Feng S M, Xu H T, Tian J T, Yang S Q, Huang J H, Pei J 2012 Sci. Sin.: Technol. 42 643 (in Chinese) [王坤霞, 冯仕猛, 徐华天, 田嘉彤, 杨树泉, 黄建华, 裴骏 2012 中国科学: 技术科学 42 643]

    [16]

    Tang Q, Shen H, Yao H, Gao K, Jiang Y, Yang W, Liu Y 2018 Sol. Energy 170 263

    [17]

    Wang P, Xiao S, Jia R, Sun H, Dai X, Su G, Tao K 2018 Sol. Energy 169 153

    [18]

    Campbell P, Wenham S R, Green M A 1993 Sol. Energy Mater. Sol. Cells 31 133

    [19]

    Chen W, Liu Y, Yang L, Wu J, Chen Q, Zhao Y, Wang Y, Du X 2018 Sci. Rep. 8 3408

    [20]

    Wu J, Liu Y, Chen Q, Chen W, Yang L, Wang Y, He M, Du X 2018 Sol. Energy 171 675

  • [1] 肖思, 秦应霖, 王慧, 王鹏, 马海铭, 何军, 王迎威. 辐射对称金字塔型剪纸的力学行为.  , 2020, 69(9): 096102. doi: 10.7498/aps.69.20200112
    [2] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性.  , 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [3] 吴以治, 许小亮. 氧化锌纳米线耦合硅金字塔微纳复合结构的制备及其自清洁特性研究.  , 2017, 66(9): 096801. doi: 10.7498/aps.66.096801
    [4] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性.  , 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [5] 邵桂芳, 郑文馨, 涂娜娜, 刘暾东, 文玉华. 高指数晶面Au-Pd纳米合金粒子的稳定结构研究.  , 2015, 64(1): 013602. doi: 10.7498/aps.64.013602
    [6] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟.  , 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [7] 田嘉彤, 冯仕猛, 王坤霞, 徐华天, 杨树泉, 刘峰, 黄建华, 裴俊. 新型添加剂对单晶硅表面金字塔形貌的影响.  , 2012, 61(6): 066803. doi: 10.7498/aps.61.066803
    [8] 刘强, 方锦清, 李永. 多种形式的加权广义Farey组织网络金字塔的复杂性.  , 2010, 59(6): 3704-3714. doi: 10.7498/aps.59.3704
    [9] 李永, 方锦清, 刘强. 多种确定性广义Farey组织的网络金字塔.  , 2010, 59(5): 2991-3000. doi: 10.7498/aps.59.2991
    [10] 周春兰, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 单晶硅表面均匀小尺寸金字塔制备及其特性研究.  , 2010, 59(8): 5777-5783. doi: 10.7498/aps.59.5777
    [11] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究.  , 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [12] 苑进社, 陈光德. 蓝宝石邻晶面衬底MBE生长GaN薄膜的瞬态光电导弛豫特性研究.  , 2007, 56(7): 4218-4223. doi: 10.7498/aps.56.4218
    [13] 茅惠兵, 景为平, 俞建国, 王基庆, 王 力, 戴 宁. 邻晶面外延生长机制的动力学Monte Carlo模拟.  , 2006, 55(10): 5435-5440. doi: 10.7498/aps.55.5435
    [14] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用.  , 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [15] 钟永春, 朱少安, 汪河洲, 曾兆华, 陈用烈. 全息制作不同晶面取向光子晶体模板.  , 2006, 55(2): 688-691. doi: 10.7498/aps.55.688
    [16] 姜金龙, 李文杰, 周 立, 赵汝光, 杨威生. 高指数稳定硅表面的低能电子衍射图分析.  , 2003, 52(1): 156-162. doi: 10.7498/aps.52.156
    [17] 晏懋洵, 吴书祥, 许惠英, 吴恩, 毛晋昌, 林旋英, 张光华, 刘嘉. 非晶硅太阳电池的光伏检测磁共振研究.  , 1988, 37(5): 847-850. doi: 10.7498/aps.37.847
    [18] 马可军, 俞振中, 金刚, 曹菊英. HCl—Fe+++溶液显示InSb{111}晶面的位错蚀坑.  , 1982, 31(9): 1285-1288. doi: 10.7498/aps.31.1285
    [19] 魏成连, 董玉兰, 高之纬. Si{111}晶面粒子堵塞坑的新现象.  , 1980, 29(9): 1222-1225. doi: 10.7498/aps.29.1222
    [20] 陈显求, 陈家平. α-SiC晶面上的配向附生体.  , 1964, 20(7): 670-679. doi: 10.7498/aps.20.670
计量
  • 文章访问数:  8351
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 修回日期:  2018-09-21
  • 刊出日期:  2019-11-20

/

返回文章
返回
Baidu
map