Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A passive range method of broadband impulse source based on matched-mode processing

Li Xiao-Man Zhang Ming-Hui Zhang Hai-Gang Piao Sheng-Chun Liu Ya-Qin Zhou Jian-Bo

Citation:

A passive range method of broadband impulse source based on matched-mode processing

Li Xiao-Man, Zhang Ming-Hui, Zhang Hai-Gang, Piao Sheng-Chun, Liu Ya-Qin, Zhou Jian-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Aiming at the passive impulse wideband source range problem in shallow water waveguides, a passive source range method with single hydrophone based on the matched mode processing is presented in this paper, the method is applied to the shallow water waveguide with a bottom of liquid semi-infinite space. Warping transformation is a useful tool to separate the normal modes of the received signals of the impulse source, and the frequency domain signals of each order can be obtained. The seafloor phase shift parameter is an important parameter describing the acoustic parameters of the seafloor, which contains nearly all the information about sea floor, what is more, the seafloor phase shift parameter is also an parameter that can be obtained by some experimental data easily. Each order normal mode can be represented by the expression that contains the phase shift parameter of sea floor. What is more, the influence of sound speed profile of the waveguide on eigenvalue can be approximately eliminated by jointly processing arbitrary two-order normal modes. Sound speed profile has a similar influence on eigenvalue of each order normal mode, therefore, the difference in the eigenvalues between arbitrary two-order normal modes can be approximated represented by the phase shift parameter of the sea-floor, the sea depth and the mean speed in the waveguide. In this way, the phase replica which consists of the eigenvalue difference of each two-order mode can be calculated simply and quickly, and then by constructing cost function and matching normal mode, the underwater impulse source can be located. Compared with the traditional method of processing matched mode and the method of processing matched fields, the method presented in this paper has two advantages: using warping transformation instead of hydrophone arrays to separate the normal modes; the replica can be calculated quickly and easily, depending on a small number of environmental parameters of waveguide. The effectiveness and accuracy of the method are proved by the results of numerical simulation and sea experimental data processing, in which the signals are both received by a single hydrophone. The sea experimental data contain linear frequency modulation impulse source signal and explosion sound source signal, and the mean relative error of range estimation is less than 10%. In the end of this paper, the range estimation error is analyzed, indicating that the error originates mainly from the mode phase parts besides the phase part of Hankel function. Consequently, finding the ways to reduce the range estimation error is an important project in the future.
      Corresponding author: Zhang Hai-Gang, zhanghaigang@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474073) and the Opening fund of Acoustics Sciences and Technology Laboratory, China (Grant No. SSKF2015002).
    [1]

    Huang Y W 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [黄益旺 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [2]

    Yang T C 1990 J. Acoust. Soc. Am. 87 2072

    [3]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese) [姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]

    [4]

    Gary R W, Robert A K, Paul J V 1988 J. Acoust. Soc. Am. 84 310

    [5]

    Lu I T, Chen H Y, Voltz P 1993 J. Acoust. Soc. Am. 93 1365

    [6]

    Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089

    [7]

    Barbara N, Grgoire L T, Jrme I 2008 IEEE ICASSP 56 2437

    [8]

    Chen H Y, Lu I T 1992 J. Acoust. Soc. Am. 92 2039

    [9]

    Yang T C 1989 J. Acoust. Soc. Am. 85 146

    [10]

    Yang T C 2014 J. Acoust. Soc. Am. 135 1218

    [11]

    Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301

    [12]

    Li Q Q 2016 Chin. Phys. Lett. 33 034301

    [13]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [14]

    Peng Z H, Li Z L, Wang G X 2010 Chin. Phys. Lett. 27 114303

    [15]

    Zhao Z D, Wang N, Gao D, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [16]

    Guo X L, Yang K D, Ma Y L, Yang Q L 2016 Acta Phys. Sin. 65 214302 (in Chinese) [郭晓乐, 杨坤德, 马远良, 杨秋龙 2016 65 214302]

    [17]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101

    [18]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]

    [19]

    Bonnel J, Aaron M T, Susanna B B, Katherine K, Michael A 2014 J. Acoust. Soc. Am. 136 145

    [20]

    Liu B S, Lei J Y 2010 Theory of UnderwaterAcoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp24-30 (in Chinese) [刘伯胜, 雷家煜 2010 水声学原理(第二版) (哈尔滨: 哈尔滨工程大学出版社)第2430页]

    [21]

    Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp628-640 (in Chinese) [汪德昭, 尚尔昌 2009 水声学(第二版) (哈尔滨: 哈尔滨工程大学出版社)第628640页]

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics Press) pp87-92

    [23]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [24]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [25]

    Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783

    [26]

    Niu H Q 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [牛海强 2014 博士学位论文 (北京: 中国科学院大学)]

    [27]

    Yang S E 2009 Theory of Underwater Sound Propagation (Harbin: Harbin Engineering University Press) pp49-55

    [28]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [29]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese) [王冬, 郭良浩, 刘建军, 戚聿波 2016 65 104302]

    [30]

    Kevin L C, Henrik S 2011 J. Acoust. Soc. Am. 130 72

  • [1]

    Huang Y W 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [黄益旺 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [2]

    Yang T C 1990 J. Acoust. Soc. Am. 87 2072

    [3]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese) [姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]

    [4]

    Gary R W, Robert A K, Paul J V 1988 J. Acoust. Soc. Am. 84 310

    [5]

    Lu I T, Chen H Y, Voltz P 1993 J. Acoust. Soc. Am. 93 1365

    [6]

    Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089

    [7]

    Barbara N, Grgoire L T, Jrme I 2008 IEEE ICASSP 56 2437

    [8]

    Chen H Y, Lu I T 1992 J. Acoust. Soc. Am. 92 2039

    [9]

    Yang T C 1989 J. Acoust. Soc. Am. 85 146

    [10]

    Yang T C 2014 J. Acoust. Soc. Am. 135 1218

    [11]

    Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301

    [12]

    Li Q Q 2016 Chin. Phys. Lett. 33 034301

    [13]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [14]

    Peng Z H, Li Z L, Wang G X 2010 Chin. Phys. Lett. 27 114303

    [15]

    Zhao Z D, Wang N, Gao D, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [16]

    Guo X L, Yang K D, Ma Y L, Yang Q L 2016 Acta Phys. Sin. 65 214302 (in Chinese) [郭晓乐, 杨坤德, 马远良, 杨秋龙 2016 65 214302]

    [17]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101

    [18]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]

    [19]

    Bonnel J, Aaron M T, Susanna B B, Katherine K, Michael A 2014 J. Acoust. Soc. Am. 136 145

    [20]

    Liu B S, Lei J Y 2010 Theory of UnderwaterAcoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp24-30 (in Chinese) [刘伯胜, 雷家煜 2010 水声学原理(第二版) (哈尔滨: 哈尔滨工程大学出版社)第2430页]

    [21]

    Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp628-640 (in Chinese) [汪德昭, 尚尔昌 2009 水声学(第二版) (哈尔滨: 哈尔滨工程大学出版社)第628640页]

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics Press) pp87-92

    [23]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [24]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [25]

    Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783

    [26]

    Niu H Q 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [牛海强 2014 博士学位论文 (北京: 中国科学院大学)]

    [27]

    Yang S E 2009 Theory of Underwater Sound Propagation (Harbin: Harbin Engineering University Press) pp49-55

    [28]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [29]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese) [王冬, 郭良浩, 刘建军, 戚聿波 2016 65 104302]

    [30]

    Kevin L C, Henrik S 2011 J. Acoust. Soc. Am. 130 72

  • [1] Zhou Yu-Yuan, Sun Chao, Xie Lei. Shallow sea matching field continuous tracking method based on trajectory Poisson multi-Bernoulli hybrid filter. Acta Physica Sinica, 2023, 72(18): 184301. doi: 10.7498/aps.72.20230124
    [2] Zhou Yu-Yuan, Sun Chao, Xie Lei, Liu Zong-Wei. A method of estimating depth of moving sound source in shallow sea based on incoherently matched beam-wavenumber. Acta Physica Sinica, 2023, 72(8): 084302. doi: 10.7498/aps.72.20222361
    [3] Wang Xuan, Sun Chao, Li Ming-Yang, Zhang Shao-Dong. Detection by angle-domain subspace with horizontal array in uncertain shallow-water environment. Acta Physica Sinica, 2022, 71(8): 084304. doi: 10.7498/aps.71.20211742
    [4] Liu Dai, Li Zheng-Lin, Liu Ruo-Yun. Sound propagation in shallow water with periodic rough bottom. Acta Physica Sinica, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [5] Zhang Shao-Dong, Sun Chao, Xie Lei, Liu Xiong-Hou, Wang Xuan. Influence of environmental uncertainty on source power estimation in shallow water waveguide. Acta Physica Sinica, 2021, 70(24): 244301. doi: 10.7498/aps.70.20210852
    [6] Li He, Guo Xin-Yi, Ma Li. Estimating structure and geoacoustic parameters of sub-bottom by using spatial characteristics of ocean ambient noise in shallow water. Acta Physica Sinica, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [7] Kong De-Zhi, Sun Chao, Li Ming-Yang, Zhuo Jie, Liu Xiong-Hou. Dimension-reduced generalized likelihood ratio detection based on sampling of normal modes in deep ocean. Acta Physica Sinica, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [8] Qian Zhi-Wen, Shang De-Jiang, Sun Qi-Hang, He Yuan-An, Zhai Jing-Sheng. Acoustic radiation from a cylinder in shallow water by finite element-parabolic equation method. Acta Physica Sinica, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [9] Meng Rui-Jie, Zhou Shi-Hong, Li Feng-Hua, Qi Yu-Bo. Identification of interference normal mode pairs of low frequency sound in shallow water. Acta Physica Sinica, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [10] Wei Yi, Liu Fei, Yang Kui, Han Ping-Li, Wang Xin-Hua, Shao Xiao-Peng. Passive underwater polarization imaging detection method in neritic area. Acta Physica Sinica, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [11] Li Peng, Zhang Xin-Hua, Fu Liu-Fang, Zeng Xiang-Xu. A modal domain beamforming approach for depth estimation by a horizontal array. Acta Physica Sinica, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [12] Li Jia-Wei, Lu Li-Cheng, Guo Sheng-Ming, Ma Li. Inversion of seabed attenuation by using single mode extracted by warping transform. Acta Physica Sinica, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [13] Li Xiao-Man, Piao Sheng-Chun, Zhang Ming-Hui, Liu Ya-Qin, Zhou Jian-Bo. A passive range method of underwater source based on single hydrophone. Acta Physica Sinica, 2017, 66(18): 184301. doi: 10.7498/aps.66.184301
    [14] Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He. Warping transform of the refractive normal mode in a shallow water waveguide. Acta Physica Sinica, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [15] Wang Dong, Guo Liang-Hao, Liu Jian-Jun, Qi Yu-Bo. Passive impulsive source range estimation based on warping operator in shallow water. Acta Physica Sinica, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [16] Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang. A far distance wideband geoacoustic parameter inversion method based on a modal dispersion curve. Acta Physica Sinica, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [17] Zhang Yu, Liu Bing-Qi, Yan Zong-Qun, Hua Wen-Shen, Li Gang. Influence of background radiation on the precision of passive ranging. Acta Physica Sinica, 2015, 64(3): 034216. doi: 10.7498/aps.64.034216
    [18] Zhu Liang-Ming, Li Feng-Hua, Sun Mei, Chen De-Sheng. Source ranging based on frequency band decomposition and distance weighting using a single acoustic vector sensor in shallow water. Acta Physica Sinica, 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [19] Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He, Zhang Bo, Ren Yun. Modal characteristic frequency in a range-dependent shallow-water waveguide and its application to passive source range estimation. Acta Physica Sinica, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [20] An Yong-Quan, Li Jin-Hua, Wang Zhi-Bin, Wang Zhao-Ba. Mono-station and single-band passive ranging based on oxygen spectrum. Acta Physica Sinica, 2013, 62(14): 144210. doi: 10.7498/aps.62.144210
Metrics
  • Abstract views:  6396
  • PDF Downloads:  282
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2016
  • Accepted Date:  05 January 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map