Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Passive underwater polarization imaging detection method in neritic area

Wei Yi Liu Fei Yang Kui Han Ping-Li Wang Xin-Hua Shao Xiao-Peng

Citation:

Passive underwater polarization imaging detection method in neritic area

Wei Yi, Liu Fei, Yang Kui, Han Ping-Li, Wang Xin-Hua, Shao Xiao-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Underwater imaging is widely applied to mariculture, archaeology, and hydrocarbon exploration, because it can provide the information about visualized target. Among various underwater imaging techniques, polarization imaging is of particular interest to us, due to its simple system structure and low cost. It images the waterbody through using the polarization characteristics of light, specifically, the background light and target light. Active polarization imaging method illuminates a target scene with an artificial polarized light source to provide polarization information for imaging. But in neritic area, active imaging leads to complex light scattering conditions when artificial light and natural light are superimposed together, which further leads to poor image quality. Passive underwater polarization imaging attempts to recover a clear image by utilizing the polarization characteristics of background light and target light. However, serious color cast always appears in the final image, resulting from light absorbed by water, which may further result in target distortion. In this manuscript, we present a passive underwater polarization imaging method for detecting a target in neritic area. A depth-information-based underwater Lambertian reflection model is established by incorporating the depth information into the traditional Lambertian reflection model. First, we attribute the light changes in color and brightness of a Lambertian surface to the spatial variation of the light. According to Lambertian reflection model, the appearance of a target on a detector depends on the light source, the surface reflectance, and the camera sensitivity function. But in underwater imaging, light attenuation at different wavelengths also varies with depth. By analyzing the transmission characteristics of background light in water, we build a physical relationship between the depth information of the scene and the background light. After that, we take the depth information as the weight of light intensity distribution. Then we calculate the product of the light intensity and the camera sensitivity function in the underwater scene according to gray world algorithm, and the real color information of the target can be obtained. Finally, the clear image of an underwater target scene can be obtained, where color cast is calibrated and background light is removed. Underwater experiments are conducted to demonstrate the validity of the proposed method. Besides, the quantitative analyses also verify the improvement of the quality in final target image. Compared with conventional passive underwater polarization imaging methods, the proposed method is capable of detecting targets in various conditions, with the color cast problem solved. It can provide underwater images with better quality and valid detailed information. Furthermore, the proposed method is easy to conduct with no need to change the conventional polarization imaging system and is promising in various practical applications.
      Corresponding author: Shao Xiao-Peng, xpshao@xidian.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61705175), the China Postdoctoral Science Foundation (Grant No. 2017M613063), the State Key Laboratory of Optical Technology for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No. CS16017050001), and the Fundamental Research Fund for the Central Universities, China (Grant No. JB170503).
    [1]

    Lavest J M, Guichard F, Rousseau C 2002 International Conference on Image Processing Rochester, NY, USA, September 22-25, 2002 p813

    [2]

    Panetta K, Gao C, Agaian S 2016 IEEE J. Oceanic Eng. 41 541

    [3]

    Chennu A, Frber P, De'Ath G, de Beer D, Fabricius K E 2017 Sci. Rep. 7 7122

    [4]

    Chiang J Y, Chen Y C 2012 IEEE Trans. Image Process. 21 1756

    [5]

    Zhao X W, Jin T, Chi H, Qu S 2015 Acta Phys. Sin. 64 104201 (in Chinese) [赵欣慰, 金韬, 池灏, 曲嵩 2015 64 104201]

    [6]

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202 (in Chinese) [韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 67 054202]

    [7]

    Liu F, Cao L, Shao X, Han P L, Bin X 2015 Appl. Opt. 54 8116

    [8]

    Huang B J, Liu T G, Han H F, Han J H, Yu M X 2016 Opt. Express 24 9826

    [9]

    Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570

    [10]

    Han P L, Liu F, Yang K, Ma J Y, Li J J, Shao X P 2017 Appl. Opt. 56 6631

    [11]

    Schechner Y Y, Averbuch Y 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 1655

    [12]

    Schechner Y Y, Karpel N 2004 IEEE Computer Vision and Pattern Recognition Washington, USA, June 22-25, 2004 p536

    [13]

    Jaffe J S 2010 Opt. Express 18 12328

    [14]

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203 (in Chinese) [管今哥, 朱京平, 田恒, 侯洵 2015 64 224203]

    [15]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385

    [16]

    Liu F, Shao X, Gao Y, Xiang L B, Han P L, Li G 2016 J. Opt. Soc. Am. A 33 237

    [17]

    Ellis J W, Bath J 1938 J. Chem. Phys. 6 723

    [18]

    Pegau W S, Gray D, Zaneveld J R V 1997 Appl. Opt. 36 6035

    [19]

    Pope R M, Fry E S 1997 Appl. Opt. 36 8710

    [20]

    Kopelevich O V, Burenkov V I 1977 Oceanology 17 278

    [21]

    Weijer J V D, Gevers T, Gijsenij A 2007 IEEE Trans. Image Process 16 2207

    [22]

    Lee Z, Wei J, Voss K, Lewis M, Bricaud A, Huot Y 2015 Appl. Opt. 54 546

    [23]

    Le M N, Wang G, Zheng H B, Liu J B, Zhou Y, Xu Z 2017 Opt. Express 25 22859

    [24]

    Dubreuil M, Delrot P, Leonard I, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [25]

    Piederrire Y, Boulvert F, Cariou J, Jeune B L, Guern Y, Brun G L 2005 Opt. Express 13 5030

    [26]

    Li F, Wu J, Wang Y, Zhao Y, Zhang X 2012 IEEE Fifth International Conference on Advanced Computational Intelligence Nanjing, China, March 29-31, 2012 p662

  • [1]

    Lavest J M, Guichard F, Rousseau C 2002 International Conference on Image Processing Rochester, NY, USA, September 22-25, 2002 p813

    [2]

    Panetta K, Gao C, Agaian S 2016 IEEE J. Oceanic Eng. 41 541

    [3]

    Chennu A, Frber P, De'Ath G, de Beer D, Fabricius K E 2017 Sci. Rep. 7 7122

    [4]

    Chiang J Y, Chen Y C 2012 IEEE Trans. Image Process. 21 1756

    [5]

    Zhao X W, Jin T, Chi H, Qu S 2015 Acta Phys. Sin. 64 104201 (in Chinese) [赵欣慰, 金韬, 池灏, 曲嵩 2015 64 104201]

    [6]

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202 (in Chinese) [韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 67 054202]

    [7]

    Liu F, Cao L, Shao X, Han P L, Bin X 2015 Appl. Opt. 54 8116

    [8]

    Huang B J, Liu T G, Han H F, Han J H, Yu M X 2016 Opt. Express 24 9826

    [9]

    Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570

    [10]

    Han P L, Liu F, Yang K, Ma J Y, Li J J, Shao X P 2017 Appl. Opt. 56 6631

    [11]

    Schechner Y Y, Averbuch Y 2007 IEEE Trans. Pattern Anal. Mach. Intell. 29 1655

    [12]

    Schechner Y Y, Karpel N 2004 IEEE Computer Vision and Pattern Recognition Washington, USA, June 22-25, 2004 p536

    [13]

    Jaffe J S 2010 Opt. Express 18 12328

    [14]

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203 (in Chinese) [管今哥, 朱京平, 田恒, 侯洵 2015 64 224203]

    [15]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385

    [16]

    Liu F, Shao X, Gao Y, Xiang L B, Han P L, Li G 2016 J. Opt. Soc. Am. A 33 237

    [17]

    Ellis J W, Bath J 1938 J. Chem. Phys. 6 723

    [18]

    Pegau W S, Gray D, Zaneveld J R V 1997 Appl. Opt. 36 6035

    [19]

    Pope R M, Fry E S 1997 Appl. Opt. 36 8710

    [20]

    Kopelevich O V, Burenkov V I 1977 Oceanology 17 278

    [21]

    Weijer J V D, Gevers T, Gijsenij A 2007 IEEE Trans. Image Process 16 2207

    [22]

    Lee Z, Wei J, Voss K, Lewis M, Bricaud A, Huot Y 2015 Appl. Opt. 54 546

    [23]

    Le M N, Wang G, Zheng H B, Liu J B, Zhou Y, Xu Z 2017 Opt. Express 25 22859

    [24]

    Dubreuil M, Delrot P, Leonard I, Alfalou A, Brosseau C, Dogariu A 2013 Appl. Opt. 52 997

    [25]

    Piederrire Y, Boulvert F, Cariou J, Jeune B L, Guern Y, Brun G L 2005 Opt. Express 13 5030

    [26]

    Li F, Wu J, Wang Y, Zhao Y, Zhang X 2012 IEEE Fifth International Conference on Advanced Computational Intelligence Nanjing, China, March 29-31, 2012 p662

  • [1] Ren Li-Qing, Yang Qiang, Ji Chao-Ran, Chi Jiao, Hu Yun, Wei Ying-Chun, Xu Jin-You. Spatial orientation of CdS nanowires based on second harmonic generation spectroscopy and microscopic imaging. Acta Physica Sinica, 2024, 73(16): 164207. doi: 10.7498/aps.73.20240753
    [2] Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng. Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field. Acta Physica Sinica, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [3] Gao Chen-Dong, Zhao Ming-Lin, Lu De-He, Dou Jian-Tai. Underwater polarization imaging based on two-layer multi-index optimization. Acta Physica Sinica, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [4] Zhao Fu, Hu Yu-Yao, Wang Peng, Liu Jun. Polarization multiplexing scattering imaging. Acta Physica Sinica, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [5] Huo Yong-Sheng. Polarization-based research on a priori defogging of dark channel. Acta Physica Sinica, 2022, 71(14): 144202. doi: 10.7498/aps.71.20220332
    [6] Sun Xue-Ying, Liu Fei, Duan Jing-Bo, Niu Geng-Tian, Shao Xiao-Peng. Broadband scattering imaging technology based on common-mode rejection of polarization characteristic. Acta Physica Sinica, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [7] Liu Fei, Sun Shao-Jie, Han Ping-Li, Zhao Lin, Shao Xiao-Peng. Clear underwater vision in non-uniform scattering field by low-rank-and-sparse-decomposition-based olarization imaging. Acta Physica Sinica, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [8] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [9] Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning. Heterodyne polarization interference imaging spectroscopy. Acta Physica Sinica, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [10] Li Ke-Wu, Wang Zhi-Bin, Yang Chang-Qing, Zhang Rui, Wang Yao-Li, Song Yan-Peng. A new technique of full polarization hyperspectral imaging based on acousto-optic tunable filter and liquid crystal variable retarder. Acta Physica Sinica, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [11] Guan Jin-Ge, Zhu Jing-Ping, Tian Heng, Hou Xun. Real-time polarization difference underwater imaging based on Stokes vector. Acta Physica Sinica, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [12] Li Cheng-Qiang, Wang Ting-Feng, Zhang He-Yong, Xie Jing-Jiang, Liu Li-Sheng, Guo Jin. Effect of source parameters on polarization characteristics of electromagnetic beam propagating in atmospheric turbulence. Acta Physica Sinica, 2014, 63(10): 104201. doi: 10.7498/aps.63.104201
    [13] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-I. concept, principle, and operation. Acta Physica Sinica, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [14] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-Ⅱ. optical design and analysis. Acta Physica Sinica, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [15] Zhang Bin, Pan Xue-Feng, Tao Wei-Dong. Study on a novel optical filter by internal reflection and optical rotation. Acta Physica Sinica, 2011, 60(5): 054214. doi: 10.7498/aps.60.054214
    [16] Li Shan, Zhong Ming-Liang, Zhang Li-Jie, Xiong Zu-Hong, Zhang Zhong-Yue. Effects of incident polarization and electric field coupling on the surface plasmon properties of square hollow Ag nanostructures. Acta Physica Sinica, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [17] Zhang Er-Feng, Dai Hong-Yi. Effect of light polarization on thermal light correlated imaging. Acta Physica Sinica, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [18] Zhang Shan, Wu Fu-Quan, Wu Wen-Di. Characteristics of multistage quartz optical filter based on the optical rotatory dispersion effect. Acta Physica Sinica, 2008, 57(8): 5020-5026. doi: 10.7498/aps.57.5020
    [19] Zheng Guo-Liang, She Wei-Long. Effect of polarization of THz pulse and probe pulse on THz electro-optic detection. Acta Physica Sinica, 2006, 55(3): 1061-1067. doi: 10.7498/aps.55.1061
    [20] Zhou Guo-Quan. Nonparaxial propagation of Gaussian beam in arbitrary linearly polarized state. Acta Physica Sinica, 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
Metrics
  • Abstract views:  8882
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2018
  • Accepted Date:  21 May 2018
  • Published Online:  20 September 2019

/

返回文章
返回
Baidu
map