-
本文针对浅海环境下中低频宽带脉冲声源被动测距问题, 提出了一种声压和水平振速联合处理的被动测距方法. 在浅海波导中, 声压和质点振速的自相关函数卷绕(warping)谱具有稳定的频率特征. 声压和水平振速的自相关卷绕谱具有相同的准线谱特征, 垂直振速自相关卷绕谱具有宽谱叠加线谱的特征, 与声压自相关卷绕谱相比, 其尖峰个数比更多, 且尖峰宽度更宽. 利用引导源, 本文提出了基于频带分解和距离加权的声压和水平振速联合被动测距方法. 利用该方法对2008年冬季青岛海域综合实验中单矢量水听器接收的气枪信号进行处理, 结果表明, 该方法能够实现气枪声源的有效测距. 与传统单声压水听器被动测距方法相比, 该方法可以有效减小代价函数的主瓣宽度、提高测距精度.A novel method is proposed for the passive source range estimation based on union processing of pressure and particle horizontal velocity. Autocorrelation functions’ warping spectra of pressure and particle velocities have frequency invariability. The spectra of the warped autocorrelation functions of pressure and particle horizontal velocity have the same line spectrum feature, while the spectrum of the warped autocorrelation function of particle vertical velocity possesses both line and broadband spectrum features. Moreover, the warped autocorrelation function’s spectrum of particle vertical velocity has more peaks, and the peak width is broader than those of pressure and particle horizontal velocity. In this paper, source ranges are estimated based on frequency band decomposition and distance weighting, and a guided source with a known range is employed to provide the crucial frequency invariant features. Experimental data in shallow water with an iso-speed profile are used to verify the approach which can reasonably estimate source ranges with the relative errors of the source ranging basically less than 7%. This method can effectively reduce the mainlobe width and background level of the cost function, and can significantly improve the resolution of source range estimation, compared with the results of conventional source ranging approach that uses a single pressure hydrophone.
-
Keywords:
- single vector hydrophone /
- source ranging /
- frequency band decomposition /
- distance weighting
[1] Thode A M, Kuperman W A, D’Spain G L, Hodgkiss W S 2000 J. Acoust. Soc. Am. 107 278
[2] Gao D Z, Wang N, Wang H Z 2010 J. Comput. Acoust. 18 245
[3] Zhao Z D, Wang N, Gao D Z 2010 Chin. Phys. Lett. 27 064301
[4] Paulo F, Orlando R, Paulo S, Emanuel E, Sergio M J 2013 Sensors 13 8856
[5] Thode A M 2000 J. Acoust. Soc. Am. 107 278
[6] Touze G L, Nicolas B, Mars J I, Lacoume J 2009 IEEE Trans. Signal Processing 57 1783
[7] Niu H Q, Zhang R H, Li Z L 2014 Sci. China-Phys. Mech. Astron. 57 424
[8] Niu H Q, Zhang R H, Li Z L 2014 J. Acoust. Soc. Am. 136 53
[9] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]
[10] Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61
[11] Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 1191
[12] Bonnel J, Dosso S E, Chapman N 2013 J. Acoust. Soc. Am. 134 120
[13] Niu H Q, ZHang R H, Li Z L, Guo Y G, He L 2013 Chin. Phys. Lett. 30 084301
[14] Zhou S H, Qi Y B, Ren Y 2014 Sci. China-Phys. Mech. Astron. 57 225
[15] Lopatka M, Touze G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP Journal on Advanced Signal Processing 2010 304103
[16] Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 J. Comput. Acoust. 23 1550003
[17] Zhou S H, Qi Y B, Ren Y, He L 2013 Sci. Sin. Phys. Mech. Astron. 43 68 (in Chinese) [周士弘, 牛海强, 任云, 何利 2013 中国科学:物理学 力学 天文学 43 68]
[18] Zhang R H, Li F H 1999 Science in China (Series A) 29 241 (in Chinese) [张仁和, 李风华 1999 中国科学(A辑) 29 241]
-
[1] Thode A M, Kuperman W A, D’Spain G L, Hodgkiss W S 2000 J. Acoust. Soc. Am. 107 278
[2] Gao D Z, Wang N, Wang H Z 2010 J. Comput. Acoust. 18 245
[3] Zhao Z D, Wang N, Gao D Z 2010 Chin. Phys. Lett. 27 064301
[4] Paulo F, Orlando R, Paulo S, Emanuel E, Sergio M J 2013 Sensors 13 8856
[5] Thode A M 2000 J. Acoust. Soc. Am. 107 278
[6] Touze G L, Nicolas B, Mars J I, Lacoume J 2009 IEEE Trans. Signal Processing 57 1783
[7] Niu H Q, Zhang R H, Li Z L 2014 Sci. China-Phys. Mech. Astron. 57 424
[8] Niu H Q, Zhang R H, Li Z L 2014 J. Acoust. Soc. Am. 136 53
[9] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]
[10] Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61
[11] Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 1191
[12] Bonnel J, Dosso S E, Chapman N 2013 J. Acoust. Soc. Am. 134 120
[13] Niu H Q, ZHang R H, Li Z L, Guo Y G, He L 2013 Chin. Phys. Lett. 30 084301
[14] Zhou S H, Qi Y B, Ren Y 2014 Sci. China-Phys. Mech. Astron. 57 225
[15] Lopatka M, Touze G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP Journal on Advanced Signal Processing 2010 304103
[16] Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 J. Comput. Acoust. 23 1550003
[17] Zhou S H, Qi Y B, Ren Y, He L 2013 Sci. Sin. Phys. Mech. Astron. 43 68 (in Chinese) [周士弘, 牛海强, 任云, 何利 2013 中国科学:物理学 力学 天文学 43 68]
[18] Zhang R H, Li F H 1999 Science in China (Series A) 29 241 (in Chinese) [张仁和, 李风华 1999 中国科学(A辑) 29 241]
计量
- 文章访问数: 5700
- PDF下载量: 204
- 被引次数: 0