Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photorefractive effect of low-temperature-grown aluminum gallium arsenide

Zhong Zi-Yuan He Kai Yuan Yun Wang Tao Gao Gui-Long Yan Xin Li Shao-Hui Yin Fei Tian Jin-Shou

Citation:

Photorefractive effect of low-temperature-grown aluminum gallium arsenide

Zhong Zi-Yuan, He Kai, Yuan Yun, Wang Tao, Gao Gui-Long, Yan Xin, Li Shao-Hui, Yin Fei, Tian Jin-Shou
PDF
HTML
Get Citation
  • The ternary compound aluminum gallium arsenide is an important material that can be used in all-optical solid-state ultrafast diagnostic technology. The low-temperature-epitaxially-grown AlGaAs (LT-AlGaAs) not only has the characteristics of ultra-short carrier lifetime of low-temperature-grown gallium arsenide (LT-GaAs), but also possesses the advantage of adjustability of band gap, which will provide great flexibility for the design of ultra-fast diagnostic systems. We use low-temperature epitaxial growth technology to grow AlGaAs on a GaAs substrate. The low-temperature-grown AlGaAs can effectively absorb 400 nm pump light to generate excess carrier. Therefore, we use a femtosecond laser with a wavelength of 800 nm and a pulse width of 200 fs as a light source to generate 400-nm pump light after passing through the BBO crystal, and 800 nm light without frequency doubling as the probe light. Using such a light source, we build a pump probe experimental platform to test the LT-AlGaAs. We normalize the experimental results and deconvolute it with the normalized laser pulses to obtain the response function of the semiconductor to the pump light. Therefore, we know that the nonequilibrium carrier relaxation time is less than 300 fs, and the nonequilibrium carrier recombination time is 2.08 ps. Due to the special passivation process, the effect of surface recombination on the carrier decay process is greatly reduced. The As clusters introduced by low-temperature epitaxial growth form deep level defects are the main factor for accelerating carrier recombination. In order to understand the complex process of photogenerated nonequilibrium carriers in depth, we use the indirect recombination theory of single recombination center to calculate the carrier recombination process, and establish an LT-AlGaAs carrier evolution model. Thus we obtain the key physical parameter related to the recombination rate, which is the carrier trapping area. We also use a theoretical model of carrier-regulated refractive index to calculate the effect of carrier concentration on the amount of change in refractive index. Combining our AlGaAs carrier evolution model, we simulate the refractive index change process of LT-AlGaAs after being illuminated by pump light. The simulation results are in good agreement with the experimental results. The method can be used for the quantitative analysis of carrier evolution characteristics of semiconductor materials, and it can conduce to the optimization and improvement of ultra-fast response semiconductor materials.
      Corresponding author: He Kai, hekai@opt.ac.cn ; Tian Jin-Shou, tianjs@opt.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 71705255).
    [1]

    顾礼, 宗方轲, 李翔, 张敬金, 张驰, 杨勤劳 2015 强激光与粒子束 27 062011

    Gu L, Zong F K, Li X, Zhang J J, Zhang C, Yang Q L 2015 High Pow. Las. Part. Beam 27 062011

    [2]

    潘京生, 亓鲁, 肖洪亮, 张蓉, 周建勋, 蒲冬冬, 吕景文 2012 61 194211Google Scholar

    Pan J S, Qi L, Xiao H L, Zhang R, Zhou J X, Pu D D, Lü J W 2012 Acta Phys. Sin. 61 194211Google Scholar

    [3]

    Bradley D K, Bell P M, Landen O L, Kilkenny J D, Oertel J 1995 Rev. Sci. Instrum. 66 716Google Scholar

    [4]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W, Remington B A 2013 Appl. Phys. Lett. 103 151111Google Scholar

    [5]

    梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴 2014 63 060702Google Scholar

    Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L, Wang X 2014 Acta Phys. Sin. 63 060702Google Scholar

    [6]

    王博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵 2015 64 200701Google Scholar

    Wang B, Bau Y L, Cao W W, Xu P, Liu B Y, Gou Y S, Zhu B L, Hou X 2015 Acta Phys. Sin. 64 200701Google Scholar

    [7]

    Gao G, He K, Tian J, Zhang C, Zhang J, Wang T, Chen S, Jia H, Yuan F, Liang L, Yan X, Li S, Wang C, Yin F 2017 Opt. Express 25 8721Google Scholar

    [8]

    Bennett B R, Soref R A, Alamo J A D 1990 IEEE J. Quantum Electron. 26 113Google Scholar

    [9]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [10]

    Dankowski S U, Streb D, Ruff M, Kiesel P, Kneissl M, Knüpfer B, Döhler G H, Keil U D, Sørensen C B, Verma A K 1996 Appl. Phys. Lett. 68 37Google Scholar

    [11]

    Lochtefeld A J, Melloch M R, Chang J C P, Harmon E S 1996 Appl. Phys. Lett. 69 1465Google Scholar

    [12]

    Fleischer S, Beling C D, Fung S, Nieveen W R, Squire J E, Zheng J Q, Missous M 1997 J. Appl. Phys. 81 190Google Scholar

    [13]

    Khanna V K 2005 Progress in Quantum Electronics 29 59Google Scholar

    [14]

    夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002

    Xia N, Gang X, Rong T Y, Wan D K, Fang D, Tang J lL, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002

    [15]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754Google Scholar

    [16]

    吕铁铮, 王韬, 钱列加, 鲁欣, 魏志义, 张杰 2002 51 1268Google Scholar

    Lü T Z, Wang T Q, Qian L J, Lu X, Wei Z Y, Zhang J 2002 Acta Phys. Sin. 51 1268Google Scholar

    [17]

    Vernon S P, Lowry M E, Baker K L, Bennett C V, Celeste J R, Cerjan C, Haynes S, Hernandez V J, Hsing W W, Lacaille G A 2012 Rev. Sci. Instrum. 83 193

    [18]

    Lasher G, Stern F 1964 Phys. Rev. 133 553Google Scholar

    [19]

    Nilsson N G 1978 Appl. Phys. Lett. 33 653Google Scholar

    [20]

    Wolff P A 1962 Phys. Rev. 126 405Google Scholar

    [21]

    Moss T S, Burrell G J, Ellis B, Omar M A 1973 Semiconductor Opto‐Electronics (London: Butterworths) pp48-94

    [22]

    沈学础 2002 半导体光谱和光学性质(北京: 科学出版社)第20页

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) p20 (in Chinese)

    [23]

    Alig R C, Bloom S 1975 Phys. Rev. Lett. 35 1522Google Scholar

    [24]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学(第7版) (北京: 电子工业出版社)第47页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Version 7) p47 (in Chinese)

    [25]

    Fang Z Q, Schlesinger T E, Milnes A G 1987 J. Appl. Phys. 61 5047Google Scholar

  • 图 1  (a)实验样品结构; (b)泵浦-探测实验光路图

    Figure 1.  (a) Structure of experimental sample; (b) pump-probe experiments optical path.

    图 2  实验数据与拟合结果

    Figure 2.  Experimental data and fitting results.

    图 3  带激励的SRH过程

    Figure 3.  SRH process diagram with excitation.

    图 4  基于理论模型计算的折射率变化量与载流子浓度关系

    Figure 4.  Relationship between refractive index change and carrier concentration based on theoretical model.

    图 5  基于带激励项的SRH过程的载流子浓度变化模型的计算结果

    Figure 5.  Calculation results of carrier concentration variation model based on SRH process with excitation term.

    图 6  泵浦-探测反射实验数据和基于光诱导折射率超快变化模型计算结果

    Figure 6.  Experimental data and calculation results based on light-induced refractive index ultrafast change model.

    图 7  两次实验与模拟计算的结果对比

    Figure 7.  Comparison of results between two experiments and simulation calculations.

    表 1  实验激光参量

    Table 1.  Laser parameters in experiment.

    参量数值
    单脉冲泵浦光能量Es/nJ2
    泵浦光斑直径dpump/μm75
    泵浦光入射深度l/nm20
    探测光斑直径dprobe/μm70
    DownLoad: CSV

    表 2  实验数据的拟合结果

    Table 2.  Fitting results of experimental data.

    物理参量数值
    A0.0082
    t0/ps0.5
    τin/ps0.44
    τre/ps2.08
    DownLoad: CSV

    表 3  LT-AlGaAs载流子浓度导致折射率变化的相关参量

    Table 3.  Parameters related to carrier-mediated refractive index change in LT-AlGaAs.

    物理参量数值物理参量数值
    me/m00.088Eg/eV1.79
    mlh/m00.102C/cm–1·s–1/24.6 × 1012
    mhh/m00.59Clh/cm–1·s–1/21.5 × 1012
    μelh/m00.047Chh/cm–1·s–1/23.1 × 1012
    μehh/m00.076εs12
    DownLoad: CSV

    表 4  电子与空穴的俘获系数和发射系数

    Table 4.  Capture and emission coefficients of electrons and holes.

    物理参量数值
    re/cm3·s–12.6 × 10–6
    rh/cm3·s–17.2 × 10–8
    se/cm3·s–1640
    sh/cm3·s–11400
    DownLoad: CSV
    Baidu
  • [1]

    顾礼, 宗方轲, 李翔, 张敬金, 张驰, 杨勤劳 2015 强激光与粒子束 27 062011

    Gu L, Zong F K, Li X, Zhang J J, Zhang C, Yang Q L 2015 High Pow. Las. Part. Beam 27 062011

    [2]

    潘京生, 亓鲁, 肖洪亮, 张蓉, 周建勋, 蒲冬冬, 吕景文 2012 61 194211Google Scholar

    Pan J S, Qi L, Xiao H L, Zhang R, Zhou J X, Pu D D, Lü J W 2012 Acta Phys. Sin. 61 194211Google Scholar

    [3]

    Bradley D K, Bell P M, Landen O L, Kilkenny J D, Oertel J 1995 Rev. Sci. Instrum. 66 716Google Scholar

    [4]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W, Remington B A 2013 Appl. Phys. Lett. 103 151111Google Scholar

    [5]

    梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴 2014 63 060702Google Scholar

    Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L, Wang X 2014 Acta Phys. Sin. 63 060702Google Scholar

    [6]

    王博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵 2015 64 200701Google Scholar

    Wang B, Bau Y L, Cao W W, Xu P, Liu B Y, Gou Y S, Zhu B L, Hou X 2015 Acta Phys. Sin. 64 200701Google Scholar

    [7]

    Gao G, He K, Tian J, Zhang C, Zhang J, Wang T, Chen S, Jia H, Yuan F, Liang L, Yan X, Li S, Wang C, Yin F 2017 Opt. Express 25 8721Google Scholar

    [8]

    Bennett B R, Soref R A, Alamo J A D 1990 IEEE J. Quantum Electron. 26 113Google Scholar

    [9]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [10]

    Dankowski S U, Streb D, Ruff M, Kiesel P, Kneissl M, Knüpfer B, Döhler G H, Keil U D, Sørensen C B, Verma A K 1996 Appl. Phys. Lett. 68 37Google Scholar

    [11]

    Lochtefeld A J, Melloch M R, Chang J C P, Harmon E S 1996 Appl. Phys. Lett. 69 1465Google Scholar

    [12]

    Fleischer S, Beling C D, Fung S, Nieveen W R, Squire J E, Zheng J Q, Missous M 1997 J. Appl. Phys. 81 190Google Scholar

    [13]

    Khanna V K 2005 Progress in Quantum Electronics 29 59Google Scholar

    [14]

    夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002

    Xia N, Gang X, Rong T Y, Wan D K, Fang D, Tang J lL, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002

    [15]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754Google Scholar

    [16]

    吕铁铮, 王韬, 钱列加, 鲁欣, 魏志义, 张杰 2002 51 1268Google Scholar

    Lü T Z, Wang T Q, Qian L J, Lu X, Wei Z Y, Zhang J 2002 Acta Phys. Sin. 51 1268Google Scholar

    [17]

    Vernon S P, Lowry M E, Baker K L, Bennett C V, Celeste J R, Cerjan C, Haynes S, Hernandez V J, Hsing W W, Lacaille G A 2012 Rev. Sci. Instrum. 83 193

    [18]

    Lasher G, Stern F 1964 Phys. Rev. 133 553Google Scholar

    [19]

    Nilsson N G 1978 Appl. Phys. Lett. 33 653Google Scholar

    [20]

    Wolff P A 1962 Phys. Rev. 126 405Google Scholar

    [21]

    Moss T S, Burrell G J, Ellis B, Omar M A 1973 Semiconductor Opto‐Electronics (London: Butterworths) pp48-94

    [22]

    沈学础 2002 半导体光谱和光学性质(北京: 科学出版社)第20页

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) p20 (in Chinese)

    [23]

    Alig R C, Bloom S 1975 Phys. Rev. Lett. 35 1522Google Scholar

    [24]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学(第7版) (北京: 电子工业出版社)第47页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Version 7) p47 (in Chinese)

    [25]

    Fang Z Q, Schlesinger T E, Milnes A G 1987 J. Appl. Phys. 61 5047Google Scholar

  • [1] Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Nonlinear topological pumping in momentum space lattice of ultracold atoms. Acta Physica Sinica, 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [2] Tao Chen-Yu, Lei Jian-Ting, Yu Xuan, Luo Yan, Ma Xin-Wen, Zhang Shao-Feng. Development of attosecond pulses and their application to ultrafast dynamics of atoms and molecules. Acta Physica Sinica, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [3] Bumaliya Abulimiti, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Song Xin-Li, Xiang Mei, Zhang Bing. Intersystem crossing of 2-Methlypyrazine studied by femtosecond photoelectron imaging. Acta Physica Sinica, 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [4] Fan Zheng-Fu, Tan Zhi-Yong, Wan Wen-Jian, Xing Xiao, Lin Xian, Jin Zuan-Ming, Cao Jun-Cheng, Ma Guo-Hong. Study on ultrafast dynamics of low-temperature grown GaAs by optical pump and terahertz probe spectroscopy. Acta Physica Sinica, 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [5] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [6] Zhang Qiang, Wang Jian-Yuan, Luo Bing-Cheng, Xing Hui, Jin Ke-Xin, Chen Chang-Le. Rectifying behavior and photovoltage effect in La1.3Sr1.7Mn2O7/SrTiO3-Nb heterostructure. Acta Physica Sinica, 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [7] Shi Li-Hong, Yan Wen-Bo, Shen Xu-Nan, Chen Gui-Feng, Chen Hong-Jian, Qiao Hui-Bin, Jia Fang-Fang, Lin Ai-Diao. Composition and temperature dependence of the light-induced scattering in Fe-doped lithium niobate. Acta Physica Sinica, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [8] Teng Li-Hua, Wang Xia, Lai Tian-Shu. Competition between band filling effect and band-gap renormalization effect in GaAs. Acta Physica Sinica, 2011, 60(4): 047201. doi: 10.7498/aps.60.047201
    [9] Jia Wan-Li, Shi Wei, Ji Wei-Li, Ma De-Ming. Study of the dipole characteristic of terahertz wave emitted from photoconductor switches. Acta Physica Sinica, 2007, 56(7): 3845-3850. doi: 10.7498/aps.56.3845
    [10] Gao Cheng-Yong, Xia Hai-Rui, Xu Jian-Qiang, Si Shu-Chun, Zhang Huai-Jin, Wang Ji-Yang, Song Hua-Long. Photorefractive properties of Ca2+doped sodium barium niobate crystals. Acta Physica Sinica, 2007, 56(8): 4648-4652. doi: 10.7498/aps.56.4648
    [11] Hu Yi. Photorefractive gain property and optimization of dynamic holographic gratings in arbitrarily cut sillenite crystal. Acta Physica Sinica, 2005, 54(11): 5428-5434. doi: 10.7498/aps.54.5428
    [12] Jiang Jun, Li Ning, Chen Gui-Bin, Lu Wei, Wang Ming-Kai, Yang Xue-Ping, Wu Gang, Fan Yao-Hui, Li Yong-Gui, Yuan Xian-Zhang. Free-electron laser induced nonlinear optical absorption in semiconductors. Acta Physica Sinica, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [13] ZHAO HONG-E, LIU SI-MIN, GUO RU, JIANG YING, LI FEI-FEI, CHEN XIAO-HU, WANG DA-YUN, WEN HAI-DONG, XU JING-JUN. CONTROL OF THE PHOTOREFRACTIVE TWO-WAVE MIXING IN LiNbO3∶Fe AND LiNbO3∶Fe∶In WITH AN INCOHERENT BACKGROUND BEAM. Acta Physica Sinica, 2001, 50(11): 2149-2154. doi: 10.7498/aps.50.2149
    [14] JIANG YING, LIU SIMIN, WEN HAI-DONG, ZHANG XIN-ZHENG, GUO RU, CHEN XIAO-HU, XU JING-JUN, ZHANG GUANG-YIN. DYNAMIC CONVERSION FROM SELF-DEFOCUSING TO EQUIVALENT “SELF-FOCUSING” IN PHOTOVOLTAIC LiNbO3:Fe CRYSTALS. Acta Physica Sinica, 2001, 50(3): 483-488. doi: 10.7498/aps.50.483
    [15] HOU CHUN-FENG, LI SHI-QUN, LI BIN, SUN XIU-DONG. INCOHERENTLY COUPLED BRIGHT-DARK SCREENING-PHOTOVOLTAIC SOLITON PAIRS IN BIASED PHOTOVOLTAIC PHOTOREFRACTIVE CRYSTALS. Acta Physica Sinica, 2001, 50(9): 1709-1712. doi: 10.7498/aps.50.1709
    [16] HOU CHUN-FENG, ABDURUSUL, DU CHUN-GUANG, SUN XIU-DONG, LI SHI-QUN. SPATIAL SOLITONS IN PHOTOREFRACTIVE ORGANIC POLYMERS. Acta Physica Sinica, 2001, 50(11): 2159-2165. doi: 10.7498/aps.50.2159
    [17] LI FEI-FEI, XU JING-JUN, LIU SI-MIN, QIAO HAI-JUN, ZHANG GUANG-YIN. PHOTOREFRACTIVE LIGHT-INDUCED BACKWARD SCATTERING IN c-CUT LiNbO3∶Fe CRYSTALS. Acta Physica Sinica, 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
    [18] SHE WEI-LONG, YU ZHEN-XIN, LEE WING KEE. SELF-PUMPED PHASE CONJUGATION OF IMPERFECTLY MODE-LOCKED PICOSECOND LASER PULSES INDUCED BY A PHOTOREFRACTIVE WAVEGUIDE. Acta Physica Sinica, 1996, 45(12): 2010-2015. doi: 10.7498/aps.45.2010
    [19] MA HAI-MING, LI FU-MING. SELF-TRANSMISSION OF PICOSECOND LIGHT PULSES IN GaAs. Acta Physica Sinica, 1989, 38(9): 1530-1533. doi: 10.7498/aps.38.1530
    [20] WANG WEI-YUAN. MEASUREMENT OF CARRIER LIFETIME OF GaAs DIODES WITH p-n AND M-S JUNCTIONS BY STEP RECOVERY METHOD. Acta Physica Sinica, 1979, 28(3): 341-349. doi: 10.7498/aps.28.341
Metrics
  • Abstract views:  10176
  • PDF Downloads:  95
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2019
  • Accepted Date:  21 May 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map