搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In–2N高共掺浓度和择优取向对ZnO最小光学带隙和吸收光谱的影响

侯清玉 李文材 赵春旺

引用本文:
Citation:

In–2N高共掺浓度和择优取向对ZnO最小光学带隙和吸收光谱的影响

侯清玉, 李文材, 赵春旺

Effect of In–2N heavy co-doping and preferred orientation on the optical band gap and absorption spectrum of ZnO

Hou Qing-Yu, Li Wen-Cai, Zhao Chun-Wang
PDF
导出引用
  • 目前, 虽然In和2N共掺对ZnO最小光学带隙和吸收光谱影响的实验研究均有报道, 但是, In和2N共掺在ZnO中均是随机掺杂, 没有考虑利用ZnO的单极性结构进行择优取向共掺, 第一性原理的出现能够解决该问题. 本文采用密度泛函理论框架下的第一性原理平面波超软赝势(GGA+U)方法, 计算了纯的ZnO单胞、择优位向高共掺In–2N原子的Zn1-xInxO1-yNy(x= 0.0625–0.03125, y=0.0625–0.125)八种超胞模型的态密度分布和吸收光谱分布. 计算结果表明, 在相同掺杂方式、不同浓度共掺In-2N的条件下, 掺杂量越增加, 掺杂体系体积越增加、能量越增加, 稳定性越下降、形成能越增加、掺杂越难、掺杂体系最小光学带隙越变窄、吸收光谱红移越显著. 计算结果与实验结果相一致. 在不同掺杂方式、相同浓度共掺In–2N的条件下, In–N沿c轴取向成键共掺与垂直于c轴取向成键共掺体系相比较, 沿c轴取向成键共掺体系最小光学带隙越变窄、吸收光谱红移越显著. 这对设计和制备新型光催化剂功能材料有一定的理论指导作用.
    Nowadays although the In–N co-doping effects on the optical band gap and absorption spectrum of ZnO are studied extensively, all of the In–N co-doped ZnO materials are of random doping, and the preferred orientation doping using the unpolarized structure of ZnO has not been considered so far. Therefore, in this paper, based on the density functional theory using first principles plane-wave ultrasoft pseudopotential (GGA+U) method, the densities of states and absorption spectra of un-doped and the In–N heavily co-doped Zn1-xInxO1-yNy (x= 0.0625-0.03125, y=0.0625-0.125) in different orientations are calculated. The results show that in the same doping mode, the larger the volume of doping system, the higher the total energy and the formation energy are and the narrower the optical band gap is; the red shifting of absorption spectrum becomes more significant with the increase of In–2N co-doping amount. Those are in good agreement with the experimental results. Under the condition of different doping manners and the same In–2N co-doped concentration, the co-coped In–N atoms along the c-axis orientation, have the narrower optical band gap and more significant red shifting of absorption spectrum than the In–N atoms with the orientation perpendicular to the c-axis. We believe that these results may be helpful for designing and preparing the new photocatalyst materials of In–N heavily co-doped ZnO.
    • 基金项目: 国家自然科学基金(批准号: 61366008, 51261017)、教育部“春晖计划”和内蒙古自治区高等学校科学研究项目(批准号: NJZZ13099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017) and the “Spring Sunshine” Project of Ministry of Education of China, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Badeker K 1907 Ann. Phys. (LeiPzig) 22 749

    [3]

    GLima D, Kim D H, Kim J K, Kwon O, Yang K J, Park K I, Kim B S, Park S M W, Kwak D J 2006 Superlattice Microst. 39 107

    [4]

    Hao X T, Ma J, Zhang D H, Yang Y G, Ma H L, Cheng C F, Liu X D 2002 Mat. Sci. Eng. B 90 50

    [5]

    Hao X T, Tan L W, Ong K S, Zhu F R 2006 J. Cryst. Growth 287 44

    [6]

    Li Z P, Men C L, Wang W, Cao J 2014 Chin. Phys. B 23 057205

    [7]

    Xie J S, Chen Q 2014 Chin. Phys. B 22 124207

    [8]

    Yuan N Y, Li J H, Fan L N, Wang X Q, Zhou Y 2006 J. Cryst. Growth 290 156

    [9]

    Wu L J, Gao Z G, Zhang E, Gao H, Li H, Zhang X T 2010 J. Lumin. 130 334

    [10]

    Yuan N Y, Fan L N, Li J H, Wang X Q 2007 Appl. Surf. Sci. 253 4990

    [11]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565

    [12]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 Appl. Phys. Lett. 90 062118

    [13]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 57 3138]

    [14]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [15]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102

    [16]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565

    [17]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [18]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [19]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [20]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [21]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118

    [22]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [23]

    Garcia J C, Scolfaro L M R, Lino A T, Freire V N, Farias G A, Silva C C, Leite H W A, Rodrigues S C P, Silva E F 2006 J. Appl. Phys. 100 104103

  • [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Badeker K 1907 Ann. Phys. (LeiPzig) 22 749

    [3]

    GLima D, Kim D H, Kim J K, Kwon O, Yang K J, Park K I, Kim B S, Park S M W, Kwak D J 2006 Superlattice Microst. 39 107

    [4]

    Hao X T, Ma J, Zhang D H, Yang Y G, Ma H L, Cheng C F, Liu X D 2002 Mat. Sci. Eng. B 90 50

    [5]

    Hao X T, Tan L W, Ong K S, Zhu F R 2006 J. Cryst. Growth 287 44

    [6]

    Li Z P, Men C L, Wang W, Cao J 2014 Chin. Phys. B 23 057205

    [7]

    Xie J S, Chen Q 2014 Chin. Phys. B 22 124207

    [8]

    Yuan N Y, Li J H, Fan L N, Wang X Q, Zhou Y 2006 J. Cryst. Growth 290 156

    [9]

    Wu L J, Gao Z G, Zhang E, Gao H, Li H, Zhang X T 2010 J. Lumin. 130 334

    [10]

    Yuan N Y, Fan L N, Li J H, Wang X Q 2007 Appl. Surf. Sci. 253 4990

    [11]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565

    [12]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 Appl. Phys. Lett. 90 062118

    [13]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3138 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 57 3138]

    [14]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [15]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102

    [16]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565

    [17]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [18]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [19]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [20]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [21]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 App. Phys. Lett. 90 062118

    [22]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [23]

    Garcia J C, Scolfaro L M R, Lino A T, Freire V N, Farias G A, Silva C C, Leite H W A, Rodrigues S C P, Silva E F 2006 J. Appl. Phys. 100 104103

  • [1] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究.  , 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究.  , 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [3] 贾晓芳, 侯清玉, 赵春旺. 采用第一性原理研究钼掺杂浓度对ZnO物性的影响.  , 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [4] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱.  , 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [5] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究.  , 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [6] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [7] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究.  , 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [8] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响.  , 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [9] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究.  , 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [10] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究.  , 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [11] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究.  , 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [12] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究.  , 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [13] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [14] 钱帅, 郭新立, 王家佳, 余新泉, 吴三械, 于金. Cun-1Au (n=2–10)团簇结构、静态极化率及吸收光谱的第一性原理研究.  , 2013, 62(5): 057803. doi: 10.7498/aps.62.057803
    [15] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究.  , 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [16] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究.  , 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [17] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究.  , 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [18] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [19] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [20] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究.  , 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
计量
  • 文章访问数:  6478
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-17
  • 修回日期:  2014-10-14
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map