Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transient characteristics of discharge of polymer sample after electon-beam irradiation

Feng Guo-Bao Cao Meng Cui Wan-Zhao Li Jun Liu Chun-Liang Wang Fang

Citation:

Transient characteristics of discharge of polymer sample after electon-beam irradiation

Feng Guo-Bao, Cao Meng, Cui Wan-Zhao, Li Jun, Liu Chun-Liang, Wang Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Charging effect of dielectric material due to electron beam irradiation has a significant influence on the microdischarge phenomenon of dielectric microwave component by multipactor. The discharge process caused by internal electron leakage can relieve this undesirable charging effect. In this paper, we study the transient discharge characteristics of a dielectric sample after being irradiated by electron beam through numerical simulation. Both the charging and discharging processes of a dielectric sample are considered with a comprehensive model. The Monte-Carlo method is used to simulate the interaction between primary electrons and material atoms before the irradiation is interrupted, including elastic scattering and inelastic scattering. The elastic scattering is calculated with the Mott scattering model, and the inelastic scattering is simulated with the fast secondary electron model or Penn model according to electron energy. Meanwhile, the transport process of internal charges in the sample during the discharge period is simulated including the charge diffusion under the force of charge density gradient, the drift due to built-in E-field, and the trap caused by material defect. In this work, the discharge process is taken to begin at the very moment of charging reaching saturation, with the internal charges kept almost unchanged. A polymer material widely used in advanced component is considered in this work due to its remarkable charging effects. Distributions of internal charges of the sample during the discharge process are simulated, and influences of sample parameters, including sample thickness, electron mobility and trap density in the discharge process, are analyzed. The results show that internal charges move to the bottom of the sample during the discharging, leading to the surface potential reaching an ultimate state which is determined by trap density of the material. The position corresponding to the maximum internal charge density shifts towards the grounded bottom. Although a sample with a larger electron mobility means a faster discharge process, fewer free electrons in this sample result in less discharge quantity. The time constant of discharge process decreases with the increase of sample electron mobility in the form of similar linearity. Although a sample with a larger thickness can hold more internal charges, the increase of sample thickness may increase the distance of internal charges leak yet. Hence, the quantity of discharge first increases and then decreases with the increase of sample thickness. In addition, a larger trap density of a dielectric sample makes charge leak harder, resulting in a lower discharge quantity. Finally, the proportion of discharge quantity in saturated charge quantity decreases from 1 to 0 exponentially with the increase of sample trap density. As a conclusion, those sample parameters have their corresponding effects on discharge characteristics by means of different physical mechanisms. Sample electron mobility determines the discharge time constant obviously by affecting the electron transport speed. The sample thickness affects the discharge quantity by shifting the charging balance mode, and material defect impedes part of discharge quantity from trapping internal free electrons. This simulation method and results can help to recede the charging effect and estimate the evolution charging and discharging states of dielectric material during and after electron beam irradiation.
      Corresponding author: Cui Wan-Zhao, cuiwanzhao@163.com
    • Funds: Project supported by the Key Program of National Natural Science Foundation of China (Grant No. U1537211), the China Postdoctoral Science Foundation (Grant No. 2016M602944XB), and the Foundation of National Key Laboratory of Space Microwave Technology, China (Grant Nos. 9140C530101140C53231, 9140C530101150C53011).
    [1]

    Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Elec. Tech. 38 38 (in Chinese) [张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 38 38]

    [2]

    Chen J R, Wu X D 1999 Space Elec. Tech. 1 19 (in Chinese) [陈建荣, 吴须大 1999 空间电子技术 1 19]

    [3]

    Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D 2005 Astrophys. J. 12 053102

    [4]

    Tan C C, Ong K S 2010 Rev. Sci. Instrum. 81 064703

    [5]

    Kim W, Jun I, Kokorowski M 2010 IEEE Trans. Nuc. Sci. 57 3143

    [6]

    Rubinstein R Y, Ridder A, Vaisman R 2013 Fast Sequential Monte Carlo Methods for Counting and Optimization (Hoboken: John Wiley Sons, Inc.)

    [7]

    Landau D P, Binder K 2014 A Guide to Monte Carlo Simulations in Statistical Physics (New York: Cambridge University Press)

    [8]

    Penn D R 1987 Phy. Rev. B 35 482

    [9]

    Mott N F, Sir H S, Massey W 1949 The Theory of Atomic Collisions (Oxford: Clarendon Press)

    [10]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [11]

    Joy D C, Joy C S 1995 Microscopy Microanal. 1 109

    [12]

    Raczka R, Raczka A 1958 Phys. Rev. 110 1469

    [13]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press)

    [14]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [15]

    Frhlich H, Mitra T K 1968 J. Phys. C 1 548

    [16]

    Ganachaud J P, Mokrani A 1995 Surf. Sci. 334 329

    [17]

    Fakhfakh S, Jbara O, Fakhfakh Z 2009 IEEE Conf. Electr. Insul. Dielectr. Phenomena 2009 441

    [18]

    Fang Z Q, Hemsky J W, Look D C, Mack M P, Molnar R J, Via G D 1997 MRS Proceed. 482 881

    [19]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [20]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [21]

    Feng G B, Wang F, Cao M 2015 Acta Phys. Sin. 64 227901 (in Chinese) [封国宝, 王芳, 曹猛 2015 64 227901]

  • [1]

    Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Elec. Tech. 38 38 (in Chinese) [张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 38 38]

    [2]

    Chen J R, Wu X D 1999 Space Elec. Tech. 1 19 (in Chinese) [陈建荣, 吴须大 1999 空间电子技术 1 19]

    [3]

    Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D 2005 Astrophys. J. 12 053102

    [4]

    Tan C C, Ong K S 2010 Rev. Sci. Instrum. 81 064703

    [5]

    Kim W, Jun I, Kokorowski M 2010 IEEE Trans. Nuc. Sci. 57 3143

    [6]

    Rubinstein R Y, Ridder A, Vaisman R 2013 Fast Sequential Monte Carlo Methods for Counting and Optimization (Hoboken: John Wiley Sons, Inc.)

    [7]

    Landau D P, Binder K 2014 A Guide to Monte Carlo Simulations in Statistical Physics (New York: Cambridge University Press)

    [8]

    Penn D R 1987 Phy. Rev. B 35 482

    [9]

    Mott N F, Sir H S, Massey W 1949 The Theory of Atomic Collisions (Oxford: Clarendon Press)

    [10]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [11]

    Joy D C, Joy C S 1995 Microscopy Microanal. 1 109

    [12]

    Raczka R, Raczka A 1958 Phys. Rev. 110 1469

    [13]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press)

    [14]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [15]

    Frhlich H, Mitra T K 1968 J. Phys. C 1 548

    [16]

    Ganachaud J P, Mokrani A 1995 Surf. Sci. 334 329

    [17]

    Fakhfakh S, Jbara O, Fakhfakh Z 2009 IEEE Conf. Electr. Insul. Dielectr. Phenomena 2009 441

    [18]

    Fang Z Q, Hemsky J W, Look D C, Mack M P, Molnar R J, Via G D 1997 MRS Proceed. 482 881

    [19]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [20]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [21]

    Feng G B, Wang F, Cao M 2015 Acta Phys. Sin. 64 227901 (in Chinese) [封国宝, 王芳, 曹猛 2015 64 227901]

  • [1] Liu Yue-Li, Zhao Si-Jie, Chen Wen, Zhou Jing. Numerical simulation of thermal and dielectric properties for SiO2/polytetrafluoroethylene dielectric composite. Acta Physica Sinica, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [2] Song Li-Wei, Shi Ying, Chen Shu-Min, Ke Xuan, Hou Xiao-Hui, Liu Zhi-Qi. Wave equation for underground viscoelastic media and wavefield numerical simulation. Acta Physica Sinica, 2021, 70(14): 149102. doi: 10.7498/aps.70.20210005
    [3] Gao Xu-Dong, Yang De-Cao, Wei Wen-Jing, Li Gong-Ping. Simulation study of electron beam irradiation damage to ZnO and TiO2. Acta Physica Sinica, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [4] Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan. Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics. Acta Physica Sinica, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [5] Ma Guo-Liang, Yang Jian-Qun, Li Xing-Ji, Liu Chao-Ming, Hou Chun-Feng. Tensile deformation mechanism of PE/CNTs irradiated by electrons. Acta Physica Sinica, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [6] Ma Guo-Liang, Li Xing-Ji, Yang Jian-Qun, Liu Chao-Ming, Hou Chun-Feng. Melting and crystallization behaviours of the electrons irradiated LDPE/MWCNTs composites. Acta Physica Sinica, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [7] Feng Guo-Bao, Wang Fang, Cao Meng. Numerical simulation of multi-combined effects of parameters on polymer charging characteristics due to electron irradiation. Acta Physica Sinica, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [8] Quan Rong-Hui, Han Jian-Wei, Zhang Zhen-Long. Macroscopic model of internal discharging in polymer under electron beam irradiation. Acta Physica Sinica, 2013, 62(24): 245205. doi: 10.7498/aps.62.245205
    [9] Liu La-Qun, Liu Da-Gang, Wang Xue-Qiong, Yang Chao, Xia Meng-Zhong, Peng Kai. The numerical simulation of the electronic energy deposition and temperature variation in post-hole convolute of magnetically insulated transmission lines. Acta Physica Sinica, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [10] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave. Acta Physica Sinica, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [11] Cai Li-Bing, Wang Jian-Guo, Zhu Xiang-Qin. Numerical simulation of multipactor on dielectric surface in high direct current field. Acta Physica Sinica, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [12] Hu Jian-Min, Wu Yi-Yong, Qian Yong, Yang De-Zhuang, He Shi-Yu. Damage of electron irradiation to the GaInP/GaAs/Ge triple-junction solar cell. Acta Physica Sinica, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [13] Hu Yue, Rao Hai-Bo. Numerical simulation of electrical transport characteristics of single layer organic devices. Acta Physica Sinica, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [14] Ren Huai-Hui, Li Xu-Dong. 3D material microstructures design and numerical simulation. Acta Physica Sinica, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [15] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [16] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [17] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] Yuan Xing-Qiu, Chen Chong-Yang, Li Hui, Zhao Tai-Zhe, Guo Wen-Kang, Xu Ping. Numerical simulation of the evolution of highly charged ions in an electron-bea m ion trap. Acta Physica Sinica, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
    [19] Wang Yan-Hui, Wang De-Zhen. Numerical simulation of dielectric-barrier-controlled glow discharge at atmosphe ric pressure. Acta Physica Sinica, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
    [20] Wang Zhen-Xia, Li Xue-Peng, Yu Li-Ping, Ma Yu-Gang, He Guo-Wei, Hu Gang, Chen Yi, Duan Xiao-Feng. . Acta Physica Sinica, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
Metrics
  • Abstract views:  5688
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2016
  • Accepted Date:  20 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map