Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of gradient phased interfaces on the laws of light propagation

Xiao Xiao Xie Shi-Wei Zhang Zhi-You Du Jing-Lei

Citation:

Influence of gradient phased interfaces on the laws of light propagation

Xiao Xiao, Xie Shi-Wei, Zhang Zhi-You, Du Jing-Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The gradient phased interface is characterized by a non-zero phase variation along the interface between two optical media,which could generate a phase shit between the emitted and incident light beams.Unlike common ones,gradient phased interfaces have a great influence on the laws of light propagation,including light reflection and refraction,and some novel phenomena are observed.For a comprehensive understanding the optical characteristics of those gradient surfaces,the universal laws of light propagation at gradient phased interfaces are derived and discussed in detail in this paper.According to Fermat's principle,we use the stationary phase method to successively acquire the two-dimensional (2D) and three-dimensional (3D) generalized laws of reflection and refraction.In the 2D generalized laws,the interfacial phase gradient lies in the plane of incidence,which is coplanar with the incident,refracted and reflected light beams. But in the 3D case,the phase gradient does not lie in the plane of incidence,and the non-planar reflection and refraction phenomena are observed.These generalized reflection and refraction laws indicate that the interface between two media could be an important factor when light traverses it,and gradient phased interfaces provide new degrees of freedom for manipulating the wavefront of light beams.Based on the generalized reflection and refraction laws,we analyze the influence of phase gradient on light propagation,then obtain critical angles of incidence for reflection and refraction (i.e.the critical angles for total internal reflection and total transmission) in 2D and 3D cases,and explain the reasons for some novel phenomena,such as reflection angle unequal to incidence angle,anomalous reflection and refraction, out-of-plane reflection and refraction,etc.These analysis results show that generalized laws of reflection and refraction have important value in optical design.In addition,we propose an optical design idea based on generalized laws of reflection and refraction,in which gradient phased interfaces are used as core components of optical elements to perform optical transform.And then a flat lens and flat axicon are taken for example to illustrate this idea,the design process of the two flat optical elements are shown in detail.Moreover,we experimentally simulate the gradient surfaces of the two elements by spatial light modulator,and experimental results agree well with theoretical values.It proves that this design idea is practicable.Our research is useful to understand comprehensively the generalized reflection and refraction laws,and extend the applications of generalized laws to flat optics,freeform optics and the accurate control of complex wavefront.
      Corresponding author: Du Jing-Lei, dujl@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305111, 61307039), the Natural Science Foundation of Sichuan Province, China (Grant No. 15ZA0280), and the Science-Technology Foundation of Leshan City, China (Grant Nos. 15GZD108, Z1320).
    [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Kats M A, Genevet P, Aoust G, Yu N F, Blanchard R, Aieta F, Gaburro Z, Capasso F 2012 PNAS 109 12364

    [3]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [4]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 NanoLett. 12 1702

    [5]

    Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F 2013 IEEE J. Sel. Top. Quantum. Electron. 19 4700423

    [6]

    SunY Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese)[孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾2013 62 104201]

    [7]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学2014 63 084103]

    [8]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学2015 64 094101]

    [9]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308

    [10]

    Pfeiffer C, Emani N K, Shaltout A M, Boltasseva A, Shalaev V M, Grbic A 2014 Nano Lett. 14 2491

    [11]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195

    [12]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889

    [13]

    Yulevich I, Maguid E, Shitrit N, Veksler D, Kleiner V, Hasman E 2015 Phys. Rev. Lett. 115 205501

    [14]

    Yu N, Capasso F 2015 J. Lightwave Technol. 33 2344

    [15]

    Ho J S, Qiu B, Tanabe Yu, Yeh A J, Fan S, Poon A S 2015 Phys. Rev. B 91 125145

    [16]

    Genevet P, Yu N, Aieta F, Lin J, Kats M A, Blanchard R, Scully M O, Gaburro Z, Capasso F 2012 Appl. Phys. Lett. 100 013101

    [17]

    Estakhri N M, Argyropoulos C, Alù A 2015 Phil. Trans. R. Soc. A 373 20140351

    [18]

    Wang D, Gu Y, Gong Y, Qiu C W, Hong M 2015 Opt. Express 23 11114

    [19]

    Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X 2015 Sci. Rep. 5 15781

    [20]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [21]

    Kildishev A, Boltasseva A, Shalaev V 2013 Science 339 1232009

  • [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Kats M A, Genevet P, Aoust G, Yu N F, Blanchard R, Aieta F, Gaburro Z, Capasso F 2012 PNAS 109 12364

    [3]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [4]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 NanoLett. 12 1702

    [5]

    Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F 2013 IEEE J. Sel. Top. Quantum. Electron. 19 4700423

    [6]

    SunY Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese)[孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾2013 62 104201]

    [7]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学2014 63 084103]

    [8]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学2015 64 094101]

    [9]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308

    [10]

    Pfeiffer C, Emani N K, Shaltout A M, Boltasseva A, Shalaev V M, Grbic A 2014 Nano Lett. 14 2491

    [11]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195

    [12]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889

    [13]

    Yulevich I, Maguid E, Shitrit N, Veksler D, Kleiner V, Hasman E 2015 Phys. Rev. Lett. 115 205501

    [14]

    Yu N, Capasso F 2015 J. Lightwave Technol. 33 2344

    [15]

    Ho J S, Qiu B, Tanabe Yu, Yeh A J, Fan S, Poon A S 2015 Phys. Rev. B 91 125145

    [16]

    Genevet P, Yu N, Aieta F, Lin J, Kats M A, Blanchard R, Scully M O, Gaburro Z, Capasso F 2012 Appl. Phys. Lett. 100 013101

    [17]

    Estakhri N M, Argyropoulos C, Alù A 2015 Phil. Trans. R. Soc. A 373 20140351

    [18]

    Wang D, Gu Y, Gong Y, Qiu C W, Hong M 2015 Opt. Express 23 11114

    [19]

    Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X 2015 Sci. Rep. 5 15781

    [20]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [21]

    Kildishev A, Boltasseva A, Shalaev V 2013 Science 339 1232009

  • [1] Gao Yue, Yu Bo-Cheng, Guo Rui, Cao Yan-Yan, Xu Ya-Dong. Optical meta-cage based on phase gradient metagrating. Acta Physica Sinica, 2023, 72(2): 024209. doi: 10.7498/aps.72.20221696
    [2] Li Yan-Min, Chen Xiang-Wei, Wu Hui-Bin, Mei Feng-Xiang. Two kinds of generalized gradient representations for generalized Birkhoff system. Acta Physica Sinica, 2016, 65(8): 080201. doi: 10.7498/aps.65.080201
    [3] Peng Ying-Zha, Zhang Kai, Zheng Bai-Lin, Li Yong. Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition. Acta Physica Sinica, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [4] Ge Wei-Kuan, Xue Yun, Lou Zhi-Mei. Generalized gradient representation of holonomic mechanical systems. Acta Physica Sinica, 2014, 63(11): 110202. doi: 10.7498/aps.63.110202
    [5] Zhang Xin-You, L. J. Li, Huang Y. C.. Euler-Lagrange equation for general n-order character functional and unification of quantitative causal principle, principle of relativity and general Newton’s laws. Acta Physica Sinica, 2014, 63(19): 190301. doi: 10.7498/aps.63.190301
    [6] Sun Yan-Yan, Han Lu, Shi Xiao-Yu, Wang Zhao-Na, Liu Da-He. General laws of reflection and refraction for metasurface with phase discontinuity. Acta Physica Sinica, 2013, 62(10): 104201. doi: 10.7498/aps.62.104201
    [7] Meng Qing-Miao, Li Zhong-Rang, Li Yu-Shan. Generalized Stenfan-Boltzmann law of the Dirac field of Barriola-Vilenkin black hole. Acta Physica Sinica, 2010, 59(10): 6847-6850. doi: 10.7498/aps.59.6847
    [8] Meng Qing-Miao, Jiang Ji-Jian, Liu Jing-Lun, Deng De-Li. The generalized Stefan-Boltzmann’s law of Dilaton-Maxwell non-stationary black hole. Acta Physica Sinica, 2009, 58(1): 78-82. doi: 10.7498/aps.58.78
    [9] Yu He-Jun, Xia Jin-Song, Yu Jin-Zhong. A highly efficient beam propagation method for modeling step-index waveguides with tilt interface. Acta Physica Sinica, 2006, 55(3): 1023-1028. doi: 10.7498/aps.55.1023
    [10] Duan Yi-Shi, Feng Shi-Xiang. . Acta Physica Sinica, 1995, 44(9): 1373-1381. doi: 10.7498/aps.44.1373
    [11] SHI JUN-JIE, PAN SHAO-HUA. SURFACE AND INTERFACE OPTICAL-PHONON MODES IN A FOUR-LAYER HETEROSTRUCTURE. Acta Physica Sinica, 1994, 43(5): 790-798. doi: 10.7498/aps.43.790
    [12] FENG SHI-XIANG, LI XI-GUO, HUANG YONG-CHANG. A DISCUSSION ABOUT "A COMMENT ON ′GENERAL CONSERVATION LAWS IN EINSTEIN-CARTAN THEORY′". Acta Physica Sinica, 1994, 43(8): 1226-1227. doi: 10.7498/aps.43.1226
    [13] LI CHENG-YAO. A COMMENT ON "GENERAL CONSERVATION LAWS IN EINSTEIN-CARTAN THEORY". Acta Physica Sinica, 1993, 42(2): 193-197. doi: 10.7498/aps.42.193
    [14] ZHENG XIAO-YU, QIAN ZU-WEN. REFLECTION OF AND REFRACTION OF FINITE AMPLITUDE SOUND WAVE ON PLANE BOUNDARY OF HALF SPACE. Acta Physica Sinica, 1990, 39(1): 89-93. doi: 10.7498/aps.39.89
    [15] DUAN YI-SHI, LIU JI -CHENG, DONG XUE-GENG. GENERAL CONVERSATION LAWS IN EINSTEIN-CARTAN THEORY. Acta Physica Sinica, 1987, 36(6): 760-768. doi: 10.7498/aps.36.760
    [16] Wu Ke, Guo Han-ying. THE PROBLEM OF MOTION IN THE KALUZA THEORY. Acta Physica Sinica, 1982, 31(10): 1443-1448. doi: 10.7498/aps.31.1443
    [17] LU QUAN-KANG. ON A GENERALIZED OHM'S LAW IN PARTIALLY IONIZED PLASMA (Ⅱ). Acta Physica Sinica, 1979, 28(3): 450-454. doi: 10.7498/aps.28.450
    [18] LU QUAN-KANG. ON A GENERALIZED OHM'S LAW IN PARTIALLY IONIZED PLASMA. Acta Physica Sinica, 1977, 26(5): 417-426. doi: 10.7498/aps.26.417
    [19] WANG CHIH-CHIANG, SUI MIN-CHIO. ON THE IMAGE QUALITY OF PLANE GRATING SPECTROMETER. Acta Physica Sinica, 1963, 19(11): 705-716. doi: 10.7498/aps.19.705
    [20] ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ-ИМПУЛЬСА В ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ. Acta Physica Sinica, 1963, 19(11): 689-704. doi: 10.7498/aps.19.689
Metrics
  • Abstract views:  9726
  • PDF Downloads:  441
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2016
  • Accepted Date:  30 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map