Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Invesitgation and experiments of wavelet thresholding in ensemble-based background error variance

Liu Bai-Nian Huang Qun-Bo Zhang Wei-Min Ren Kai-Jun Cao Xiao-Qun Zhao Jun

Citation:

Invesitgation and experiments of wavelet thresholding in ensemble-based background error variance

Liu Bai-Nian, Huang Qun-Bo, Zhang Wei-Min, Ren Kai-Jun, Cao Xiao-Qun, Zhao Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A large amount of sampling noise which exists in the ensemble-based background error variance need be reduced effectively before being applied to operational data assimilation system.Unlike the typical Gaussian white noise,the sampling noise is scaled and space-dependent,thus making its energy level on some scales much larger than the average. Although previous denoising methods such as spectral filtering or wavelet thresholding have been successfully used for denoising Gaussian white noise,they are no longer applicable for dealing with this kind of sampling noise.One can use a different threshold for each scale,but it will bring a big error especially on larger scales.Another modified method is to use a global multiplicative factor,α, to adjust the filtering strength based on the optimization of trade-off between removal of the noise and averaging of the useful signal.However,tuning α is not so easy,especially in real operational numerical weather prediction context.It motivates us to develop a new nearly cost-free filter whose threshold can be automatically calculated.#br#According to the characteristics of sampling noise in background error variance,a heterogeneous filtering method similar to wavelet threshold technology is employed.The threshold,TA,determined by iterative algorithm is used to estimate the truncated remainder whose norm is smaller than TA.The standard deviation of truncated remainder term is regard as first guess of sampling noise.Non-Guassian term of sampling noise,whose coefficient modulus is above TA,is regarded as a small probability event.In order to incorporate such a coefficient into the domain of[-T,T],a semi-empirical formula is used to calculate and approach the ideal threshold.#br#According to the characteristics of sampling noise in background error variance,a heterogeneous filtering method similar to wavelet threshold technology is employed.The threshold,TA,determined by iterative algorithm is used to estimate the truncated remainder whose norm is smaller than TA.The standard deviation of truncated remainder term is regard as first guess of sampling noise.Non-Guassian term of sampling noise,whose coefficient modulus is above TA,is regarded as a small probability event.In order to incorporate such a coefficient into the domain of[-T,T],a semi-empirical formula is used to calculate and approach the ideal threshold.#br#A new nearly cost-free filter is proposed to reduce the scale and space-dependent sampling noise in ensemble-based background error variance.It is able to remove most of the sampling noises,while extracting the signal of interest. Compared with those of primal wavelet filter and spectral filter,the performance and efficiency of proposed method are improved in 1D framework and real data assimilation system experiments.Further work should focus on the sphere wavelets,which is appropriate for analysing and reconstructing the signals on the sphere in global spectral models.
      Corresponding author: Liu Bai-Nian, bnliu@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41375113, 41475094, 41305101, 41605070).
    [1]

    Zhang W M, Cao X Q, Song J Q 2012 Acta Phys. Sin. 61 249202(in Chinese)[张卫民, 曹小群, 宋君强2012 61 249202]

    [2]

    Wang S C, LI Y, Zhang W M, Zhao J, Cao X Q 2011 Acta Phys. Sin. 60 099203(in Chinese)[王舒畅, 李毅, 张卫民, 赵军, 曹小群2011 60 099203]

    [3]

    Laroche S, Gauthier G 1998 Tellus Ser. A 50 557

    [4]

    Derber J, Bouttier F 1999 Tellus Ser. A 51 195

    [5]

    Buizza R, Houtekamer P L, Pellerin G, Toth Z, Zhu Y J, Wei M Z 2005 Mon. Weather Rev. 133 1076

    [6]

    Houtekamer P L, Mitchell H L 1998 Mon. Weather Rev. 126 3

    [7]

    Evensen G 1994 J. Geophys. Res. 99 10143

    [8]

    Bonavita M, Raynaud L, Isaksen L 2011 Q. J. R. Meteorol. Soc. 137 423

    [9]

    Berre L, Varella H, Desroziers G 2015 Q. J. R. Meteorol. Soc. 141 2803

    [10]

    Raynaud L, Berre L, Desroziers G 2009 Q. J. R. Meteorol. Soc. 135 1177

    [11]

    Pereira M B, Berre L 2006 Mon. Weather Rev.134 2466

    [12]

    Raynaud L, Berre L, Desroziers G 2008 Q. J. R. Meteorol. Soc. 134 1003

    [13]

    Wiener N 1949 Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Cambridge:Massachusetts Institute of Technology) pp86-90

    [14]

    Bonavita M, Isaksen L, Hólm E 2012 Q. J. R. Meteorol. Soc. 138 1540

    [15]

    Liu B N, Zhang W M, Cao X Q, Zhao Y L, Huang Q B 2015 China J. Geophys. 58 1526(in Chinese)[刘柏年, 张卫民, 曹小群, 赵延来, 皇群博, 罗雨2015地球 58 1526]

    [16]

    Donoho D L, Johnstone J M 1994 Biometrical81 425

    [17]

    Parrish D F, Derber J C 1992 Mon. Weather Rev.120 1747

    [18]

    Fisher M 2003 Proceedings ECMWF Seminar on "Recent Developments in Data Assimilation for Atmosphere and Ocean" Reading, September 8-12, 2003 p45

    [19]

    Isaksen L, Fisher M, Berner J 2006 ECMWF Tech. Memo. 492

    [20]

    Moore S, Wood S, Davies P 1998 Annals of Statistics 26 1

    [21]

    Daley R 1993 Atmospheric Data Analysis1993(Cambridge:Cambridge University Press) pp46-50

    [22]

    Azzalini A, Farge M, Schneider K 2005 Appl. Comput. Harmon. Anal. 18 177

    [23]

    Yen R N V, Farge M, Schneider K 2012 Physica D Nonlinear Phenomena 241 186

    [24]

    Pannekoucke O, Raynaud L, Farge M 2014 Q. J. R. Meteorol. Soc. 140 316

    [25]

    Zhang W M, Liu B N, Cao X Q, Zhao Y L, Zhu M B, Zhao W J 2016 Acta Meteorol Sin. 74 410(in Chinese)[张卫民, 刘柏年, 曹小群, 赵延来, 朱孟斌, 赵文静2016气象学报74 410]

  • [1]

    Zhang W M, Cao X Q, Song J Q 2012 Acta Phys. Sin. 61 249202(in Chinese)[张卫民, 曹小群, 宋君强2012 61 249202]

    [2]

    Wang S C, LI Y, Zhang W M, Zhao J, Cao X Q 2011 Acta Phys. Sin. 60 099203(in Chinese)[王舒畅, 李毅, 张卫民, 赵军, 曹小群2011 60 099203]

    [3]

    Laroche S, Gauthier G 1998 Tellus Ser. A 50 557

    [4]

    Derber J, Bouttier F 1999 Tellus Ser. A 51 195

    [5]

    Buizza R, Houtekamer P L, Pellerin G, Toth Z, Zhu Y J, Wei M Z 2005 Mon. Weather Rev. 133 1076

    [6]

    Houtekamer P L, Mitchell H L 1998 Mon. Weather Rev. 126 3

    [7]

    Evensen G 1994 J. Geophys. Res. 99 10143

    [8]

    Bonavita M, Raynaud L, Isaksen L 2011 Q. J. R. Meteorol. Soc. 137 423

    [9]

    Berre L, Varella H, Desroziers G 2015 Q. J. R. Meteorol. Soc. 141 2803

    [10]

    Raynaud L, Berre L, Desroziers G 2009 Q. J. R. Meteorol. Soc. 135 1177

    [11]

    Pereira M B, Berre L 2006 Mon. Weather Rev.134 2466

    [12]

    Raynaud L, Berre L, Desroziers G 2008 Q. J. R. Meteorol. Soc. 134 1003

    [13]

    Wiener N 1949 Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Cambridge:Massachusetts Institute of Technology) pp86-90

    [14]

    Bonavita M, Isaksen L, Hólm E 2012 Q. J. R. Meteorol. Soc. 138 1540

    [15]

    Liu B N, Zhang W M, Cao X Q, Zhao Y L, Huang Q B 2015 China J. Geophys. 58 1526(in Chinese)[刘柏年, 张卫民, 曹小群, 赵延来, 皇群博, 罗雨2015地球 58 1526]

    [16]

    Donoho D L, Johnstone J M 1994 Biometrical81 425

    [17]

    Parrish D F, Derber J C 1992 Mon. Weather Rev.120 1747

    [18]

    Fisher M 2003 Proceedings ECMWF Seminar on "Recent Developments in Data Assimilation for Atmosphere and Ocean" Reading, September 8-12, 2003 p45

    [19]

    Isaksen L, Fisher M, Berner J 2006 ECMWF Tech. Memo. 492

    [20]

    Moore S, Wood S, Davies P 1998 Annals of Statistics 26 1

    [21]

    Daley R 1993 Atmospheric Data Analysis1993(Cambridge:Cambridge University Press) pp46-50

    [22]

    Azzalini A, Farge M, Schneider K 2005 Appl. Comput. Harmon. Anal. 18 177

    [23]

    Yen R N V, Farge M, Schneider K 2012 Physica D Nonlinear Phenomena 241 186

    [24]

    Pannekoucke O, Raynaud L, Farge M 2014 Q. J. R. Meteorol. Soc. 140 316

    [25]

    Zhang W M, Liu B N, Cao X Q, Zhao Y L, Zhu M B, Zhao W J 2016 Acta Meteorol Sin. 74 410(in Chinese)[张卫民, 刘柏年, 曹小群, 赵延来, 朱孟斌, 赵文静2016气象学报74 410]

  • [1] Wang Shu-Chao, Su Xiu-Qin, Zhu Wen-Hua, Chen Song-Mao, Zhang Zhen-Yang, Xu Wei-Hao, Wang Ding-Jie. A time-correlated single photon counting signal denoising method based on elastic variational mode extraction. Acta Physica Sinica, 2021, 70(17): 174304. doi: 10.7498/aps.70.20210149
    [2] Li Jing-He, He Zhan-Xiang, Yang Jun, Meng Shu-Jun, Li Wen-Jie, Liao Xiao-Qian. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain. Acta Physica Sinica, 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [3] Wang Meng-Jiao, Zhou Ze-Quan, Li Zhi-Jun, Zeng Yi-Cheng. An adaptive denoising algorithm for chaotic signals based on collaborative filtering. Acta Physica Sinica, 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [4] Niu Ming-Sheng, Wang Gui-Shi. The research of δ13CO2 by use of wavelet de-noising at 2.008 μm based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2017, 66(2): 024202. doi: 10.7498/aps.66.024202
    [5] Wang Xiang-Li, Wang Bin, Wang Wen-Bo, Yu Min. Extractraction of non-stationary harmonic from chaotic background based on synchrosqueezed wavelet transform. Acta Physica Sinica, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [6] Du Wen-Liao, Tao Jian-Feng, Gong Xiao-Yun, Gong Liang, Liu Cheng-Liang. Dual-tree complex wavelet transform based multifractal detrended fluctuation analysis for nonstationary time series. Acta Physica Sinica, 2016, 65(9): 090502. doi: 10.7498/aps.65.090502
    [7] Zhou Xian-Chun, Wang Mei-Ling, Zhou Lin-Feng, Wu Qin. Image denoising model based on the improved Demons algorithm. Acta Physica Sinica, 2015, 64(2): 024205. doi: 10.7498/aps.64.024205
    [8] Zhou Xian-Chun, Wang Mei-Ling, Shi Lan-Fang, Zhou Lin-Feng. Diffusion denoising model based on the wavelet and biharmonic equation. Acta Physica Sinica, 2015, 64(6): 064203. doi: 10.7498/aps.64.064203
    [9] Zhang Yu-Yan, Zhou Hang, Yan Meisu. Study on the phase-extracting method of self-mixing signal based on empirical mode decomposition. Acta Physica Sinica, 2015, 64(5): 054203. doi: 10.7498/aps.64.054203
    [10] Wang Meng-Jiao, Wu Zhong-Tang, Feng Jiu-Chao. A parameter optimization nonlinear adaptive denoising algorithm for chaotic signals. Acta Physica Sinica, 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [11] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [12] Wu Zhu-Hui, Han Yue-Qi, Zhong Zhong, Du Hua-Dong, Wang Yun-Feng. Ensemble variational data assimilation method based on regional successive analysis scheme. Acta Physica Sinica, 2014, 63(7): 079201. doi: 10.7498/aps.63.079201
    [13] Chen Xiao, Wang Chen-Long. Noise suppression for Lamb wave signals by Tsallis mode and fractional-order differential. Acta Physica Sinica, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [14] Lü Shan-Xiang, Feng Jiu-Chao. A phase space denoising method for chaotic maps. Acta Physica Sinica, 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [15] Zhong Jian, Fei Jian-Fang, Huang Si-Xun, Huang Xiao-Gang, Cheng Xiao-Ping. Application of the multi-parameters error model in cyclone wind retrieval with scatterometer data. Acta Physica Sinica, 2013, 62(15): 159302. doi: 10.7498/aps.62.159302
    [16] Gao Guo-Rong, Liu Yan-Ping, Pan Qiong. A differentiable thresholding function and an adaptive threshold selection technique for pulsar signal denoising. Acta Physica Sinica, 2012, 61(13): 139701. doi: 10.7498/aps.61.139701
    [17] Yang Wei, Zhang Yu, Xie Ying-Hai. Minimum-energy frame of discrete signal space and its de-noising application to rectangular pulse signal. Acta Physica Sinica, 2010, 59(11): 8255-8263. doi: 10.7498/aps.59.8255
    [18] Cao Xiao-Qun, Huang Si-Xun, Du Hua-Dong. The new method of modeling horizontal error functions in variational assimilation with orthogonal wavelet. Acta Physica Sinica, 2008, 57(3): 1984-1989. doi: 10.7498/aps.57.1984
    [19] Gou Xue-Qiang, Zhang Yi-Jun, Dong Wan-Sheng. Wavelet-based multifractal analysis of ground electric field before occurrence of strong discharge in thunderstorm. Acta Physica Sinica, 2006, 55(2): 957-961. doi: 10.7498/aps.55.957
    [20] Deng Yu-Qiang, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue. Effects of noise on spectral phase reconstruction with wavelet analysis. Acta Physica Sinica, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
Metrics
  • Abstract views:  5977
  • PDF Downloads:  247
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2016
  • Accepted Date:  20 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map