Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Large enhanced perpendicular magnetic anisotropy and thermal stability in Ta/CoFeB/MgO films with excess boron

Chang Yuan-Si Li Gang Zhang Ying Cai Jian-Wang

Citation:

Large enhanced perpendicular magnetic anisotropy and thermal stability in Ta/CoFeB/MgO films with excess boron

Chang Yuan-Si, Li Gang, Zhang Ying, Cai Jian-Wang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The discovery of perpendicular magnetic anisotropy(PMA) in Ta/CoFeB/MgO film and the demonstration of high performance perpendicular magnetic tunnel junction(p-MTJ) based on this material system have accelerated the development of the next-generation high-density non-volatile memories and other spintronic devices. Currently it is urgently needed to improve the interfacial PMA and thermal stability of the CoFeB/MgO system for practical applications. So far, the perpendicularly magnetized CoFeB/MgO films and the corresponding p-MTJs have been extensively explored with the B content of the CoFeB layer mostly fixed at about 20 atomic percent. In this paper, four sets of multilayered films Ta/(Co0.5Fe0.5)1-xBx/MgO(x=0.1, 0.2, 0.3) and MgO/(Co0.5Fe0.5)0.7B0.3/Ta with different CoFeB thickness are deposited on thermally oxidized Si substrates by magnetron sputtering at room temperature, and subsequently they are annealed in high vacuum at different temperatures ranging from 573 to 623 K. The room temperature magnetic properties of the annealed samples are characterized by using vibrating sample magnetometer and superconducting quantum interference device magnetometer. With normal B content of 20% for the CoFeB layer, the Ta/CoFeB/MgO structure annealed at 573 K shows perpendicular magnetization when the CoFeB layer is no thicker than 1.2 nm. As the B content decreases to 10%, it has been found that PMA is achieved only in the sample with a 0.8 nm CoFeB layer under the same annealing condition. The result shows that the interfacial PMA appreciably falls off when the B content is reduced by half. On the other hand, when the B content of the CoFeB layers increases from 20% to 30%, the Ta/CoFeB/MgO structure annealed at 573 K exhibits PMA with the CoFeB layer as thick as 1.4 nm and the interfacial PMA(Ks) increases from 1.710-3 Jm-2 to 1.910-3 Jm-2 together with slightly improved thermal stability. Most remarkably, the MgO/CoFeB/Ta structure with 30% B shows optimum annealing temperature of about 623 K, at which Ks reaches 2.010-3Jm-2 and PMA is realized in the samples with the CoFeB thickness up to 1.5 nm. In contrast, the same structure with 20% B is magnetically destroyed completely under this annealing temperature. The present results suggest that the CoFeB layer with excess B can effectively improve the perpendicular magnetic properties and thermal stability for the Ta/CoFeB/MgO system, and one should take into account the B content effect to optimize the spintronic devices based on the perpendicularly magnetized CoFeB/MgO system.
      Corresponding author: Cai Jian-Wang, jwcai@aphy.iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 51371191, 11374349, 51431009).
    [1]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246

    [2]

    Ohmori H, Hatori T, Nakagawa S 2008 J. Appl. Phys. 103 07A911

    [3]

    Yoshikawa M, Kitagawa E, Nagase T, Daibou T, Nagamine M, Nishiyama K, Kishi T, Yoda H 2008 IEEE Trans. Magn. 44 2573

    [4]

    Kim G, Sakuraba Y, Oogane M, Ando Y, Miyazaki T, Oogane M, Ando Y, Miyazaki T 2008 Appl. Phys. Lett. 92 172502

    [5]

    Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese)[冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华2009 58 3503]

    [6]

    Liu N, Wang H, Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese)[刘娜, 王海, 朱涛2012 61 167504]

    [7]

    Yakushiji K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Andoet K 2010 Appl. Phys. Lett. 97 232508

    [8]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2008 Appl. Phys. Lett. 92 102508

    [9]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [10]

    Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501

    [11]

    Liu T, Cai J W, Sun L 2012 AIP Adv. 2 032151

    [12]

    Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Reports 4 5895

    [13]

    Pai C F, Nguyen M H, Belvin C, Vilela-Leão L H, Ralph D C, Buhrman R A 2014 Appl. Phys. Lett. 104 082407

    [14]

    Almasi H, Hickey D R, Newhouse-Illige T, Xu M, Rosales M R, Nahar S, Held J T, Mkhoyan K A, Wang W G 2015 Appl. Phys. Lett. 106 182406

    [15]

    Lee Y M, Hayakawa J, Ikeda S, Matsukura F, Ohno H 2007 Appl. Phys. Lett. 90 212507

    [16]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

  • [1]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246

    [2]

    Ohmori H, Hatori T, Nakagawa S 2008 J. Appl. Phys. 103 07A911

    [3]

    Yoshikawa M, Kitagawa E, Nagase T, Daibou T, Nagamine M, Nishiyama K, Kishi T, Yoda H 2008 IEEE Trans. Magn. 44 2573

    [4]

    Kim G, Sakuraba Y, Oogane M, Ando Y, Miyazaki T, Oogane M, Ando Y, Miyazaki T 2008 Appl. Phys. Lett. 92 172502

    [5]

    Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese)[冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华2009 58 3503]

    [6]

    Liu N, Wang H, Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese)[刘娜, 王海, 朱涛2012 61 167504]

    [7]

    Yakushiji K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Andoet K 2010 Appl. Phys. Lett. 97 232508

    [8]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2008 Appl. Phys. Lett. 92 102508

    [9]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [10]

    Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501

    [11]

    Liu T, Cai J W, Sun L 2012 AIP Adv. 2 032151

    [12]

    Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Reports 4 5895

    [13]

    Pai C F, Nguyen M H, Belvin C, Vilela-Leão L H, Ralph D C, Buhrman R A 2014 Appl. Phys. Lett. 104 082407

    [14]

    Almasi H, Hickey D R, Newhouse-Illige T, Xu M, Rosales M R, Nahar S, Held J T, Mkhoyan K A, Wang W G 2015 Appl. Phys. Lett. 106 182406

    [15]

    Lee Y M, Hayakawa J, Ikeda S, Matsukura F, Ohno H 2007 Appl. Phys. Lett. 90 212507

    [16]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

  • [1] Yang Meng, Bai He, Li Gang, Zhu Zhao-Zhao, Zhu Yun, Su Jian, Cai Jian-Wang. Epitaxial growth of Ho3Fe5O12 films with perpendicular magnetic anisotropy and spin transport properties in Ho3Fe5O12/Pt heterostructures. Acta Physica Sinica, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [2] Chen Chuan-Wen, Xiang Yang. Magnetization distribution in exchange spring bilayers with mutually orthogonal anisotropies. Acta Physica Sinica, 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [3] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [4] Ju Hai-Lang, Wang Hong-Xin, Cheng Peng, Li Bao-He, Chen Xiao-Bai, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy study of CoFeB/Ni multilayers by anomalous Hall effect. Acta Physica Sinica, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [5] Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Physica Sinica, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [6] Ju Hai-Lang, Xiang Ping-Ping, Wang Wei, Li Bao-He. Enhancement of perpendicular magnetic anisotropy and thermal stability in Co/Ni multilayers by MgO/Pt interfaces. Acta Physica Sinica, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [7] Yu Tao, Liu Yi, Zhu Zheng-Yong, Zhong Hui-Cai, Zhu Kai-Gui, Gou Cheng-Ling. Influence of Mo capping layer on magnetic anisotropy of MgO/CoFeB/Mo. Acta Physica Sinica, 2015, 64(24): 247504. doi: 10.7498/aps.64.247504
    [8] Liu Na, Wang Hai, Zhu Tao. Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect. Acta Physica Sinica, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [9] Ma Qiang, Jiang Jian-Jun, Bie Shao-Wei, Du Gang, Feng Ze-Kun, He Hua-Hui. Electromagnetic and microwave properties of discontinuous CoFeB/MgO soft magnetic multilayer films. Acta Physica Sinica, 2008, 57(10): 6577-6581. doi: 10.7498/aps.57.6577
    [10] Composition dependence of L10 ordering of FePt (001) thin films on MgO underlayer grown at room temperature. Acta Physica Sinica, 2007, 56(12): 7266-7273. doi: 10.7498/aps.56.7266
    [11] Guo Yu-Xian, Wang Jie, Xu Peng-Shou, Li Hong-Hong, Cai Jian-Wang. Element-specific in-plane magnetic anisotropy in Co0.9Fe0.1 films. Acta Physica Sinica, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [12] Zhai Zhong-Hai, Teng Jiao, Li Bao-He, Wang Li-Jin, Yu Guang-Hua, Zhu Feng-Wu. Exchange bias with perpendicular anisotropy in (Pt/Co)n/FeMn multilayers. Acta Physica Sinica, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [13] Zhang Jian-Min, Xu Ke-Wei, Zhang Mei-Rong. Theory of abnormal grain growth in thin films and analysis of energy anisotropy. Acta Physica Sinica, 2003, 52(5): 1207-1212. doi: 10.7498/aps.52.1207
    [14] TANG YUN-JUN, B.F.P.ROOS, B.HILLEBRANDS, ZHAO HONG-WU, ZHAN WEN-SHAN. ANISOTROPY AND COERCIVITY ANALYSIS OF Fe/MnPd BILAYERS. Acta Physica Sinica, 2000, 49(5): 997-1001. doi: 10.7498/aps.49.997
    [15] Xiong Xiang-Yuan, He Kai-Yuan. . Acta Physica Sinica, 1995, 44(8): 1286-1290. doi: 10.7498/aps.44.1286
    [16] LI HUA, JIANG SHOU-TING, MEI LIANG-MO, GAO RU-WEI. RESEARCH ON THE ORIGIN OF MAGNETO-CRYSTALLINE ANISOTROPY IN COMPOUND Nd2Fe14B. Acta Physica Sinica, 1993, 42(7): 1179-1185. doi: 10.7498/aps.42.1179
    [17] WANG RUI-PING, HUANG DA-JIN, SHI QIN-WEI, XU PENG, CHEN QI, GU GEN-DA, CAI WEI-LI, ZHOU GUI-EN, RUAN YAO-ZHONG. ANISOTROPIC THERMOELECTRIC POWER OF Bi2Sr2CaCu2O8 SINGLE CRYSTAL. Acta Physica Sinica, 1992, 41(7): 1147-1150. doi: 10.7498/aps.41.1147
    [18] Li Hua Jiang Shou-ting Mei Liang-mo Gao Ru-wei. RESEARCH ON THE ORIGIN OF MAGNET O-CRYSTALLINE ANISOTROPY IN COMPOUND Nd_2Fe_14_B. Acta Physica Sinica, 1991, 40(7): 1179-1185. doi: 10.7498/aps.40.1179
    [19] GUAN PENG, LIU YI-HUA, GUO YI-CHENG. INDUCED ANISOTROPY IN Co-Zr AMORPHOUS FILMS. Acta Physica Sinica, 1989, 38(12): 2029-2033. doi: 10.7498/aps.38.2029
    [20] CHEN DU-XING. INDUCED ANISOTROPY IN METALLIC GLASSES (Fe1-xCox)78Si10B12. Acta Physica Sinica, 1984, 33(10): 1359-1367. doi: 10.7498/aps.33.1359
Metrics
  • Abstract views:  6481
  • PDF Downloads:  312
  • Cited By: 0
Publishing process
  • Received Date:  24 October 2016
  • Accepted Date:  22 November 2016
  • Published Online:  05 January 2017

/

返回文章
返回
Baidu
map