-
InSb infrared focal plane array(IRFPA) detector, active in 3-5 m range, has been widely used in military fields. Higher fracture probability appearing in InSb infrared focal plane arrays(IRFPAs) subjected to thermal shock test, restricts its final yield. In order to analyze and optimize the structure of InSb IRFPAs, it is necessary to create the three-dimensional structural model of InSb IRFPAs, which is employed to estimate its strain distribution appearing in the different fabricating processes. In this paper, the curing model of underfill is described by its volume contraction percentage combined with the elastic modulus of the completely cured underfill. Thus, both the von Mises stress and the Z-components of strain accumulated in the curing process of underfill are calculated. When InSb IRFPAs is naturally cooled to room temperature from the curing temperature of underfill, the Z-component of strain distribution appearing on the top surface of InSb IRFPAs is obtained with our structural model, which is identical to the deformation distribution on the top surface of InSb IRFPAs measured at room temperature. In the following thermal shock simulation, we find that the maximal von Mises stress appears at 100 K and the maximal Z-component of strain appears at 150 K, these two temperature points are located in the second half of the thermal shock process, these results indicate that the fracture of InSb chip happens more easily in liquid nitrogen shock test. This inference is consistent with the fact appearing in liquid nitrogen shock test. All these findings suggest that the proposed model is suitable to estimate the deformation distribution of InSb IRFPAs and its changing rule in its different fabricating stages.
-
Keywords:
- infrared focal plane arrays /
- InSb /
- structural stress
[1] He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays(1st Ed.)(Beijing:National Defence Industry Press) p1(in Chinese)[何力, 杨定江, 倪国强2011先进焦平面技术导论(第1版)(北京:国防工业出版社)第1页]
[2] Qiu W C, Hu W D 2015 Sci. China:Phys. Mech. Astron. 58 027001
[3] Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25(in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫2016红外与毫米波学报35 25]
[4] Tidrow M Z, 2005 Proceedings of SPIE Bellingham, WA, March 25-28, 2005 p217
[5] Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese)[龚海梅, 刘大福2008红外与激光工程37 18]
[6] Meng Q D, Zhang X L, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese)[孟庆端, 张晓玲, 张立文, 吕衍秋2012 61 190701]
[7] Zhang X L, Meng Q D, Zhang L W, L Y Q 2014 Infrared Phys. Technol. 63 28
[8] Zhang X L, Meng C, Zhang W, L Y Q, Si J J, Meng Q D 2016 Infrared Phys. Technol. 76 631
[9] Sadeghinia M, Jansen K M B, Ernst L J 2012 Microelectron. Reliab. 52 1711
[10] Sadeghinia M, Jansen K M B, Ernst L J 2012 Int. J. Adhes. Adhes. 32 82
[11] Yamaguchi H, Enomoto T, Sato T, 2014 Proceedings of ICEP Toyama, Japan April 23-25, 2014 p507
[12] Yang D G, Ernst L J, Hof C, Kiasat M S, Bisschop J, Janssen J, Kuper F, Liang Z N, Schravendeel R, Zhang G Q 2000 Microelectron. Reliab. 40 1533
[13] Jiang J, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143
[14] He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochim. Acta 357-358 1
[15] White G K, Collins J G 1972 J. Low Temp. Phys. 7 43
[16] Cheng X, Liu C, Silberschmidt V V 2012 Comput. Mater. Sci. 52 274
[17] Chang R W, Patrick Mccluskey F 2009 J. Electron. Mater. 38 1855
[18] Meng Q D, Yu Q, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋2012 61 226103]
-
[1] He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays(1st Ed.)(Beijing:National Defence Industry Press) p1(in Chinese)[何力, 杨定江, 倪国强2011先进焦平面技术导论(第1版)(北京:国防工业出版社)第1页]
[2] Qiu W C, Hu W D 2015 Sci. China:Phys. Mech. Astron. 58 027001
[3] Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25(in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫2016红外与毫米波学报35 25]
[4] Tidrow M Z, 2005 Proceedings of SPIE Bellingham, WA, March 25-28, 2005 p217
[5] Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese)[龚海梅, 刘大福2008红外与激光工程37 18]
[6] Meng Q D, Zhang X L, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese)[孟庆端, 张晓玲, 张立文, 吕衍秋2012 61 190701]
[7] Zhang X L, Meng Q D, Zhang L W, L Y Q 2014 Infrared Phys. Technol. 63 28
[8] Zhang X L, Meng C, Zhang W, L Y Q, Si J J, Meng Q D 2016 Infrared Phys. Technol. 76 631
[9] Sadeghinia M, Jansen K M B, Ernst L J 2012 Microelectron. Reliab. 52 1711
[10] Sadeghinia M, Jansen K M B, Ernst L J 2012 Int. J. Adhes. Adhes. 32 82
[11] Yamaguchi H, Enomoto T, Sato T, 2014 Proceedings of ICEP Toyama, Japan April 23-25, 2014 p507
[12] Yang D G, Ernst L J, Hof C, Kiasat M S, Bisschop J, Janssen J, Kuper F, Liang Z N, Schravendeel R, Zhang G Q 2000 Microelectron. Reliab. 40 1533
[13] Jiang J, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143
[14] He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochim. Acta 357-358 1
[15] White G K, Collins J G 1972 J. Low Temp. Phys. 7 43
[16] Cheng X, Liu C, Silberschmidt V V 2012 Comput. Mater. Sci. 52 274
[17] Chang R W, Patrick Mccluskey F 2009 J. Electron. Mater. 38 1855
[18] Meng Q D, Yu Q, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋2012 61 226103]
Catalog
Metrics
- Abstract views: 6395
- PDF Downloads: 218
- Cited By: 0