Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural model of InSb IRFPAs including underfill curing process

Zhang Xiao-Ling Si Le-Fei Meng Qing-Duan Lü Yan-Qiu Si Jun-Jie

Citation:

Structural model of InSb IRFPAs including underfill curing process

Zhang Xiao-Ling, Si Le-Fei, Meng Qing-Duan, Lü Yan-Qiu, Si Jun-Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • InSb infrared focal plane array(IRFPA) detector, active in 3-5 m range, has been widely used in military fields. Higher fracture probability appearing in InSb infrared focal plane arrays(IRFPAs) subjected to thermal shock test, restricts its final yield. In order to analyze and optimize the structure of InSb IRFPAs, it is necessary to create the three-dimensional structural model of InSb IRFPAs, which is employed to estimate its strain distribution appearing in the different fabricating processes. In this paper, the curing model of underfill is described by its volume contraction percentage combined with the elastic modulus of the completely cured underfill. Thus, both the von Mises stress and the Z-components of strain accumulated in the curing process of underfill are calculated. When InSb IRFPAs is naturally cooled to room temperature from the curing temperature of underfill, the Z-component of strain distribution appearing on the top surface of InSb IRFPAs is obtained with our structural model, which is identical to the deformation distribution on the top surface of InSb IRFPAs measured at room temperature. In the following thermal shock simulation, we find that the maximal von Mises stress appears at 100 K and the maximal Z-component of strain appears at 150 K, these two temperature points are located in the second half of the thermal shock process, these results indicate that the fracture of InSb chip happens more easily in liquid nitrogen shock test. This inference is consistent with the fact appearing in liquid nitrogen shock test. All these findings suggest that the proposed model is suitable to estimate the deformation distribution of InSb IRFPAs and its changing rule in its different fabricating stages.
      Corresponding author: Meng Qing-Duan, qdmengly@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No. 61505048) and the Aero Science Foundation of China(Grant No. 20152442001).
    [1]

    He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays(1st Ed.)(Beijing:National Defence Industry Press) p1(in Chinese)[何力, 杨定江, 倪国强2011先进焦平面技术导论(第1版)(北京:国防工业出版社)第1页]

    [2]

    Qiu W C, Hu W D 2015 Sci. China:Phys. Mech. Astron. 58 027001

    [3]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25(in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫2016红外与毫米波学报35 25]

    [4]

    Tidrow M Z, 2005 Proceedings of SPIE Bellingham, WA, March 25-28, 2005 p217

    [5]

    Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese)[龚海梅, 刘大福2008红外与激光工程37 18]

    [6]

    Meng Q D, Zhang X L, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese)[孟庆端, 张晓玲, 张立文, 吕衍秋2012 61 190701]

    [7]

    Zhang X L, Meng Q D, Zhang L W, L Y Q 2014 Infrared Phys. Technol. 63 28

    [8]

    Zhang X L, Meng C, Zhang W, L Y Q, Si J J, Meng Q D 2016 Infrared Phys. Technol. 76 631

    [9]

    Sadeghinia M, Jansen K M B, Ernst L J 2012 Microelectron. Reliab. 52 1711

    [10]

    Sadeghinia M, Jansen K M B, Ernst L J 2012 Int. J. Adhes. Adhes. 32 82

    [11]

    Yamaguchi H, Enomoto T, Sato T, 2014 Proceedings of ICEP Toyama, Japan April 23-25, 2014 p507

    [12]

    Yang D G, Ernst L J, Hof C, Kiasat M S, Bisschop J, Janssen J, Kuper F, Liang Z N, Schravendeel R, Zhang G Q 2000 Microelectron. Reliab. 40 1533

    [13]

    Jiang J, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143

    [14]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochim. Acta 357-358 1

    [15]

    White G K, Collins J G 1972 J. Low Temp. Phys. 7 43

    [16]

    Cheng X, Liu C, Silberschmidt V V 2012 Comput. Mater. Sci. 52 274

    [17]

    Chang R W, Patrick Mccluskey F 2009 J. Electron. Mater. 38 1855

    [18]

    Meng Q D, Yu Q, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋2012 61 226103]

  • [1]

    He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays(1st Ed.)(Beijing:National Defence Industry Press) p1(in Chinese)[何力, 杨定江, 倪国强2011先进焦平面技术导论(第1版)(北京:国防工业出版社)第1页]

    [2]

    Qiu W C, Hu W D 2015 Sci. China:Phys. Mech. Astron. 58 027001

    [3]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Waves 35 25(in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫2016红外与毫米波学报35 25]

    [4]

    Tidrow M Z, 2005 Proceedings of SPIE Bellingham, WA, March 25-28, 2005 p217

    [5]

    Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese)[龚海梅, 刘大福2008红外与激光工程37 18]

    [6]

    Meng Q D, Zhang X L, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese)[孟庆端, 张晓玲, 张立文, 吕衍秋2012 61 190701]

    [7]

    Zhang X L, Meng Q D, Zhang L W, L Y Q 2014 Infrared Phys. Technol. 63 28

    [8]

    Zhang X L, Meng C, Zhang W, L Y Q, Si J J, Meng Q D 2016 Infrared Phys. Technol. 76 631

    [9]

    Sadeghinia M, Jansen K M B, Ernst L J 2012 Microelectron. Reliab. 52 1711

    [10]

    Sadeghinia M, Jansen K M B, Ernst L J 2012 Int. J. Adhes. Adhes. 32 82

    [11]

    Yamaguchi H, Enomoto T, Sato T, 2014 Proceedings of ICEP Toyama, Japan April 23-25, 2014 p507

    [12]

    Yang D G, Ernst L J, Hof C, Kiasat M S, Bisschop J, Janssen J, Kuper F, Liang Z N, Schravendeel R, Zhang G Q 2000 Microelectron. Reliab. 40 1533

    [13]

    Jiang J, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143

    [14]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochim. Acta 357-358 1

    [15]

    White G K, Collins J G 1972 J. Low Temp. Phys. 7 43

    [16]

    Cheng X, Liu C, Silberschmidt V V 2012 Comput. Mater. Sci. 52 274

    [17]

    Chang R W, Patrick Mccluskey F 2009 J. Electron. Mater. 38 1855

    [18]

    Meng Q D, Yu Q, Zhang L W, L Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋2012 61 226103]

  • [1] Cao Yu, Liu Chao-Ying, Zhao Yao, Na Yan-Ling, Jiang Chong-Xu, Wang Chang-Gang, Zhou Jing, Yu Hao. Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [2] Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211525
    [3] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [4] Jiang Wei, Zhao Huan, Wang Guo-Cui, Wang Xin-Ke, Han Peng, Sun Wen-Feng, Ye Jia-Sheng, Feng Sheng-Fei, Zhang Yan. Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging. Acta Physica Sinica, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [5] Cao Yu,  Zhu Xin-Yun,  Chen Han-Bo,  Wang Chang-Gang,  Zhang Xin-Tong,  Hou Bing-Dong,  Shen Ming-Ren,  Zhou Jing. Simulation and optimal design of antimony selenide thin film solar cells. Acta Physica Sinica, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [6] Gu Wen-Hao, Chang Sheng-Jiang, Fan Fei, Zhang Xuan-Zhou. InSb based subwavelength array for terahertz wave focusing. Acta Physica Sinica, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [7] Zhang Xiao-Ling, Meng Qing-Duan, Zhang Li-Wen, Geng Dong-Feng, Lü Yan-Qiu. Deformation modeling of InSb IRFPAs under liquid nitrogen shock. Acta Physica Sinica, 2014, 63(15): 156101. doi: 10.7498/aps.63.156101
    [8] Meng Qing-Duan, Yu Qian, Zhang Li-Wen, Lü Yan-Qiu. Mechanical parameters selection in InSb focal plane array detector normal direction. Acta Physica Sinica, 2012, 61(22): 226103. doi: 10.7498/aps.61.226103
    [9] Meng Qing-Duan, Zhang Xiao-Ling, Zhang Li-Wen, Lü Yan-Qiu. Structural modeling of 128× 128 InSb focal plane array detector. Acta Physica Sinica, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [10] Wang Li, Bi Si-Wen, Wang Guo-Guo. Multimode squeezed light generation in a three-plane-mirror confocal cavity. Acta Physica Sinica, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [11] Qiao Hui, Liao Yi, Hu Wei-Da, Deng Yi, Yuan Yong-Gang, Zhang Qin-Yao, Li Xiang-Yang, Gong Hai-Mei. Real-time study of γ irradiation on Hg1-xCdxTe focal plane photodiodes. Acta Physica Sinica, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [12] YU ZHEN-ZHONG, JIN GANG, CHEN XIN-QIANG, MA KE-JUN. ANOMALOUS IMPURITY SEGREGATION IN InSb SINGLE CRYSTALS. Acta Physica Sinica, 1980, 29(1): 19-24. doi: 10.7498/aps.29.19
    [13] YU ZHEN-ZHONG, JIN GANG, CHEN XIN-QIANG, MA KE-JUN. ON THE FACETS AND TWIN FORMATION IN THE GROWTH OF InSb SINGLE CRYSTALS. Acta Physica Sinica, 1980, 29(1): 11-18. doi: 10.7498/aps.29.11
    [14] WANG GOO-WEN, BAO YAN-PENG, CAO JIN-RUI, ZHANG GUANG-YONG. THE EFFECTS OF PLANE STRESS ON FOUR EXCITON LINE SERIES IN CUPROUS OXIDE CRYSTAL. Acta Physica Sinica, 1966, 22(7): 743-748. doi: 10.7498/aps.22.743
    [15] WU TZU-CHIANG, TANG TING-YUAN. THE NOISE OF THE p-TYPE INDIUM ANTIMONIDE. Acta Physica Sinica, 1966, 22(2): 205-213. doi: 10.7498/aps.22.205
    [16] SHU HUNG-DAR, LIN LAN-YING. HEAT TREATMENT OF INDIUM ANTIMONIDE. Acta Physica Sinica, 1966, 22(6): 698-707. doi: 10.7498/aps.22.698
    [17] HUANG CHII-SHENG, TANG TING-YUAN. RECOMBINATION PROCESSES OF CARRIERS IN INDIUM ANTIMONIDE. Acta Physica Sinica, 1965, 21(5): 1038-1048. doi: 10.7498/aps.21.1038
    [18] SHAW NAN, LIU YI-HUAN. X-RAY MEASUREMENT OF THE THERMAL EXPANSION OF GERMANIUM, SILICON, INDIUM ANTIMONIDE AND GALLIUM ARSENIDE. Acta Physica Sinica, 1964, 20(8): 699-704. doi: 10.7498/aps.20.699
    [19] LIN LAN-YING, SHU HUNG-DAR. THE MECHANICAL DAMAGE OF INDIUM ANTIMONIDE. Acta Physica Sinica, 1964, 20(12): 1268-1277. doi: 10.7498/aps.20.1268
    [20] . Acta Physica Sinica, 1962, 18(3): 175-176. doi: 10.7498/aps.18.175
Metrics
  • Abstract views:  6395
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2016
  • Accepted Date:  30 September 2016
  • Published Online:  05 January 2017

/

返回文章
返回
Baidu
map