-
热冲击下红外焦平面探测器的高碎裂概率制约着其成品率.为明晰碎裂机理, 基于等效设想, 利用小面阵等效大面阵解决了128×128面阵探测器三维结构建模所需单元数过多的问题, 同时综合考虑材料线膨胀系数的温度依赖性、材料强度的各向异性、表面加工损伤效应, 合理选取InSb材料性能参数, 建立起128×128面阵探测器结构有限元分析模型.模拟结果表明:热冲击下最大Von Mises 应力值出现在N电极区域, 其极值呈非连续分布, 这意味着热冲击下128×128面阵探测器的裂纹起源于N电极区域, 且不止一条.上述结论与碎裂统计分析报告中典型裂纹起源地及裂纹分布这两方面相符合, 这为后续面阵探测器碎裂诱因的研究及结构可靠性设计提供了切实可行的研究思路.Higher fracture probability appearing in InSb infrared focal plane array (IRFPA) subjected to thermal shock test, restricts its final yield. In order to understand the fracture mechanism, in light of the proposed equivalent method, where a 32× 32 array is employed to replace the real 128× 128 array, to a three - dimensional structural model of IRFPA is developed by taking into account the temperature dependence of thermal expansion coefficient, anisotropic mechanical strength of InSb chip, damaging effects of the surface of the InSb chip, and a reduction of 90% the out-of-plane elastic modulus. Simulation results show that a maximum Von Mises stress appears in the N electrode zone in InSb chip, and the extremum values present a non-continuous distribution. This means that the cracks is most likely to emerge in the region of N electrode, besides, the number of crack tracks is more than one. These are well consistent with the 128× 128 InSb IRFPA fracture statistics results under thermal shock test. All these are beneficial to the further study of fracture inducing factors and structural reliability design of InSb IRFPA.
-
Keywords:
- focal plane array /
- InSb /
- structural stress
[1] He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays (1st Ed.) (Beijing: National Defence Industry Press) p1 (in Chinese) [何力, 杨定江, 倪国强 2011 先进焦平面技术导论(第1版) (北京:国防工业出版社) 第1页]
[2] Tidrow M Z 2005 Proceedings of SPIE, Bellingham, WA, March 25-28, 2005 p217
[3] Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese) [龚海梅, 刘大福 2008 红外与激光工程 37 18]
[4] Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory 1 1
[5] Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Techn. 45 143
[6] He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta 357-358 1
[7] White G K, Collins J G 1972 J. Low. Temp. Phys. 7 43
[8] Cheng X, Liu C, Silberschmidt V V 2012 Comp. Mater. Sci. 52 274
[9] Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855
[10] Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052
-
[1] He L, Yang D J, Ni G Q 2011 Introduction to Advanced Focal Plane Arrays (1st Ed.) (Beijing: National Defence Industry Press) p1 (in Chinese) [何力, 杨定江, 倪国强 2011 先进焦平面技术导论(第1版) (北京:国防工业出版社) 第1页]
[2] Tidrow M Z 2005 Proceedings of SPIE, Bellingham, WA, March 25-28, 2005 p217
[3] Gong H M, Liu D F 2008 Infrared Laser Eng. 37 18 (in Chinese) [龚海梅, 刘大福 2008 红外与激光工程 37 18]
[4] Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory 1 1
[5] Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Techn. 45 143
[6] He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta 357-358 1
[7] White G K, Collins J G 1972 J. Low. Temp. Phys. 7 43
[8] Cheng X, Liu C, Silberschmidt V V 2012 Comp. Mater. Sci. 52 274
[9] Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855
[10] Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052
计量
- 文章访问数: 7626
- PDF下载量: 577
- 被引次数: 0