-
本研究提出了一种基于行列扫描式信号读取方式的非制冷型PbSe红外焦平面阵列(IRFPA)探测器,并采用表面钝化层和上下通孔结构设计以确保电性连接的可靠性与稳定性,从而提升探测器性能。IRFPA探测器的整体尺寸为3.5 mmx3.5 mm,像元尺寸为200μmx100 μm,像元间距为200μm。电-热仿真结果验证了探测器结构的设计合理性。通过像元测试和成像实验,发现该探测器在室温下表现出优异的性能,其平均比探测率达到9.86
x109 Jones,平均响应率为1.03 A/W,有效像元率为100%。此外,探测器在空气环境中静置150天后,得益于表面钝化层的保护,其性能仅下降3.6%。红外成像结果表明,该探测器在不同光功率密度下能够实现高对比度成像,显示出对不同光强的高灵敏探测能力。上述研究结果为开发高性能、高稳定性的PbSe IRFPA探测器提供了重要技术支撑和理论基础。 Infrared focal plane array (IRFPA) detector, a key research focus in next-generation infrared detection technology, plays a crucial role in optoelectronic sensing. Here, we report the integration and reliability of a PbSe-based IRFPA employing a row-column scanning readout architecture. The design features a surface passivation layer and through-hole structures to ensure robust electrical connectivity, enhancing both stability and performance. The detector, with dimensions of 3.5 mm×3.5 mm, a pixel size of 200 μmx 100 μm, and a pixel pitch of 200 μm, demonstrates structural integrity validated by electro-thermal simulations. At room temperature, pixel-level and imaging assessments reveal an average detectivity of 9.86×109 Jones and a responsivity of 1.03 A/W, with a 100% effective pixel yield. Remarkably, the device retains high stability, exhibiting only a 3.6% performance decline after 150 days of air exposure, attributed to the protective effects of the passivation layer. Infrared imaging across varied light intensities shows pronounced contrast, confirming the detector’s sensitivity to illumination gradients. These results offer critical technical insights and a theoretical framework for advancing high-performance, stable PbSe-based IRFPA detectors. -
Keywords:
- PbSe /
- Focal plane /
- Array /
- Infrared imaging
-
[1] Yuan J J 2006Laser Infrared 36 1009(in chinese)[袁继俊2006激光与红外36 1099]
[2] Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174
[3] Karim A, Andersson J Y 2013IOP Conference Series:Materials Science and Engineering Karachi, Pakistan, June 24-26, 2013 p012001
[4] Rogalski A, Martyniuk P, Kopytko M 2017 Appl. Phys. Rev. 4 031304
[5] Rogalski A 2012 Prog. Quantum Electron. 36 342
[6] Gupta M C, Harrison J T, Islam M T 2021 Mater. Adv. 2 3133
[7] Zhang G D, Zhu Q S, Xue B C, Li Y Z, Shi K H, Qiu J J 2024Infrared 45 1(in chinese)[张国栋,朱庆帅,薛奔驰,李彦臻,石康昊,邱继军2024 红外45 1]
[8] Yang N, Yuan M F, Wang P, Zhang R B, Sun J, Mao H P 2019 J. Sci. Food Agric. 99 3459
[9] Guo Z M, Wang M M, Agyekum A A, Wu J Z, Chen Q S, Zuo M, El-Seedi H R, Tao F F, Shi J Y, Q O Y, Zou X B 2020 J. Food Eng. 279 109955
[10] Jiang H, Lin H, Lin J J, Adade S Y S S, Chen Q S, Xue Z L, Chan C M 2022 Food Control 133 108640
[11] Shen G H, Kang X C, Su J S, Qiu J B, Liu X, Xu J H, Shi J R, Mohamed S R 2022 Food Chem. 384132487
[12] Sheng R, Cheng W, Li H H, Ali S, Agyekum A A, Chen Q S 2019 Postharvest Biol. Technol. 156110952
[13] Beystrum T, R Himoto R, Jacksen N, Sutton M 2004Infrared Technology and Applications XXX Orlando, United States, April 12-16, 2004 p287
[14] Sanchez F J, Rodrigo M T, Vergara G, Lozano M, Santander J, Torquemada M C, Gomez L J, Villamayor V, Alvarez M, Verdu M, Almazán R 2005Infrared Technology and Applications XXXI Orlando, United States, April 1, 2005 p441
[15] Vergara G, Montojo M T, Torquemada M C, Rodrigo M T, Sanchez F J, Gomez L J, Almazan R M, Verdu M, Rodriguez P, Villamayor V, Alvarez M, Diezhandino J, Plaza J, Catalan I 2007 Opto-Electron. Rev. 15110
[16] Green K, Yoo S S, Kauffman C 2014Infrared Technology and Applications XL Baltimore, United States, May 5-9, 2014 p430
[17] Shi K H, Liu Y, Luo Y M, Bian J N, Qiu J J 2021 RSC Adv. 11 36895
[18] Li Z, Chen Y Y, Lang H Z, Wan J H, Gao Y, Dong H T, Zhang X K, Feng W R 2022 J. Mater. Sci.-Mater. Electron. 33 5564
[19] Song J L, Feng W R, Ren Y S, Zheng D N, Dong H T, Zhu R, Yi L Y, Hu J F 2018 Vacuum 155 1
[20] Ren Y X, Li Y Q, Li W B, Zhao S, Chen H, Liu X Z 2022 Appl. Surf. Sci. 584152578
[21] Qiu J J, Su L S, McDowell L L, Phan Q, Liu Y, Zhang G D, Yang Y M, Shi Z S 2023 ACS Appl. Mater. Interfaces 15 24541
[22] Chen Y S, Ren Z Y, Xu H L, Zhu H M, W Y, Wu H Z 2022J. Infrared Millim. Waves 41 980(in chinese)[陈岩松,任梓洋,徐翰纶,朱海明,王垚,吴惠桢2022 红外与毫米波学报41 980]
[23] Moss T S, 1961J. Phys. Chem. Solids 22 117
[24] Yao Y F, An Y X, Dong J T, Wang Y, Tu K N, Liu Y X 2024J. Mater. Res. Technol. 31 3374
[25] Yu M Y, Feng T L, Jiang Z Y, Huan Z Y, Lv Q J, Zhu Y, Xu Z W, Liu G W, Qiao G J, Liu J L 2023 Mater. Sci. in Semicond. Process 163107540
[26] Huan Z Y, Lv Q J, Yu M Y, Li R F, Huang Z Y, Liu G W, Qiao G J, Liu J L 2024 Sens. Actuators A-Phys. 370115254
[27] Yuan Y L, Yao C S, Wang G, Lu M 2012Res. Prog. SSE 32 110(in chinese)[袁愿林,姚昌胜,王果,陆敏2012 固体电子学研究与进展32 110]
[28] Li X, Wu S E, Wu D, Zhao T X, Lin P, Shi Z F, Tian Y T, Li X J, Zeng L H, Yu X C 2024 InfoMat 6e12499
[29] Qi Z Y, Fu X W, Yang T F, Li D, Fan P, Li H L, Jiang F, Li L H, Luo Z Y, Zhuang X J, Pan A L 2019 Nano Res. 12 1894
[30] Bae W K, Joo J, Padilha L A, Won J, Lee D C, Lin Q L, Koh W K, Luo H M, Klimov V I, Pietryga J M 2012 J. Am. Chem. Soc. 134 20160
[31] Reiss P, Protiere M, Li L 2009 Small 5 154
[32] Giansante C, Infante I 2017 J. Phys. Chem. Lett. 8 5209
[33] Yang D, Wang D K, Fang X, Fang D, Yang L, Xiang C, Li J H, Wang X H 2023Laser Optoelectron. Prog. 60 53(in chinese)[杨丹,王登魁,方铉,房丹,杨丽,项超,李金华,王晓华2023 激光与光电子学进展60 53]
[34] Harrison J T, Gupta M C 2023 Infrared Phys. Technol. 135104977
[35] GB/T 17444-2013. Infraction flat array parameter test method 2014(in chinese)[GB/T 17444-2013.红外焦平面阵列参数测试方法2014]
[36] Jiang J, Cheng R Q, Yin L, Wen Y, Wang H, Zhai B X, Liu C S, Shan C X, He J 2022Sci. Bull. 67 1659
[37] Wang Y, Gu Y, Cui A L, Li Q, He T, Zhang K, Wang Z, Li Z P, Zhang Z H, Wu P S, Xie R Z, Wang F, Wang P, Shan C X, Li H, Ye Z H, Zhou P, Hu W D 2022Adv. Mater. 34 2107772
计量
- 文章访问数: 80
- PDF下载量: 2
- 被引次数: 0