Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deformation modeling of InSb IRFPAs under liquid nitrogen shock

Zhang Xiao-Ling Meng Qing-Duan Zhang Li-Wen Geng Dong-Feng Lü Yan-Qiu

Citation:

Deformation modeling of InSb IRFPAs under liquid nitrogen shock

Zhang Xiao-Ling, Meng Qing-Duan, Zhang Li-Wen, Geng Dong-Feng, Lü Yan-Qiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The deformation appearing in InSb infrared focal plane arrays (IRFPAs) as subjected to liquid nitrogen shock tests, is an important criterion to assess the reliability of the structure designed and to predict the number of thermal cycling after which no cracks appear in InSb IRFPAs. After analyzing both the deformation distribution and the deformation running directions appearing in InSb IRFPAs at 77 K, we assume that the thermal strain accumulated in the liquid nitrogen shock test is completely relaxed. Based on this assumption and according to the temperature rising curve, we may obtain the deformation distribution in InSb IRFPAs at room temperature, which is identical in the deformation charactristics to the photograph of InSb IRFPAs taken at room temperature. After comparing the simulated liquid nitrogen shock tests (which InSb IRFPAs experience), with its fabrication process, we can infer that the square checkerboard buckling pattern appearing in the top surface of InSb IRFPAs originates from the residual stress and strain generated in the process of insufficient cures. And the deformation amplitude decreases with decreasing temperature of InSb IRFPAs in the nitrogen liquid shock tests. At 77 K, the deformation amplitude reduces to zero. This state corresponds to our assumption, that the accumulated stress and strain disappears. When the temperature of InSb IRFPAs increases from 77 K to room temperature, the square checkerboard buckling pattern will reappear in the top surface of InSb IRFPAs. These findings are beneficial to the optimization of the structure of InSb IRFPAs and to the improvement of the number of thermal cycling experienced by InSb IRFPA without cracks generated from liquid nitrogen shock tests.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.61107083, 61205090).
    [1]

    Zhou P, Li C F, Liao C J, Wei Z J, Yuan S Q 2011 Chin. Phys. B 20 028502

    [2]
    [3]
    [4]

    Huo Y H, Ma W Q, Zhang Y H, Huang J L, Wei Y, Cui K, Chen L H 2011 Acta Phys. Sin. 60 098401 (in Chinese) [霍永恒, 马文全, 张艳华, 黄建亮, 卫炀, 崔凯, 陈良惠 2011 60 098401]

    [5]

    Xiong D Y, Li N, Li Z F, Zhen H L, Lu W 2007 Chin. Phys. Lett. 24 1403

    [6]
    [7]

    Hu W D, Chen X S, Ye Z H, Feng A L, Yin F, Zhang B, Liao L, Lu W 2013 IEEE J. Sel. Top. Quantum Electro. 19 4100107

    [8]
    [9]

    Hu W D, Chen X S, Ye Z H, Lu W 2011 Appl. Phys. Lett. 99 091101

    [10]
    [11]
    [12]

    Hoffman A W, Corrales E, Love P J, Rosbecka J, Merrill M 2004 Proceedings of SPIE, Glasgow, Scotland, United Kingdom, June 21-22, 2004 p59

    [13]
    [14]

    Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory 1 1

    [15]
    [16]

    Meng Q D, Zhang X L, Zhang L W, Lü Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese) [孟庆端, 张晓玲, 张立文, 吕衍秋 2012 61 190701]

    [17]
    [18]

    Zhang X L, Meng Q D, Yu Q, Zhang L W, Lü Y Q 2013 J. Mech. Sci. Technol. 27 1809

    [19]
    [20]
    [21]

    Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143

    [22]

    Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855

    [23]
    [24]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta 357–358 1

    [25]
    [26]
    [27]

    Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052

    [28]

    Meng Q D, Yu Q, Zhang L W, Lü Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese) [孟庆端, 余倩, 张立文, 吕衍秋 2012 61 226103]

    [29]
    [30]

    Nawab Y, Tardif X, Boyard N, Sobotka V, Casari P, Jacquemin F 2012 Compos. Sci. Technol. 73 81

    [31]
    [32]

    Merzlyakov M, McKenna G B, Simon S L 2006 Compos. Part A 37 585

    [33]
    [34]

    Zhao L G, Warrior N A, Long A C 2007 Mater. Sci. Eng. A 452–453 483

  • [1]

    Zhou P, Li C F, Liao C J, Wei Z J, Yuan S Q 2011 Chin. Phys. B 20 028502

    [2]
    [3]
    [4]

    Huo Y H, Ma W Q, Zhang Y H, Huang J L, Wei Y, Cui K, Chen L H 2011 Acta Phys. Sin. 60 098401 (in Chinese) [霍永恒, 马文全, 张艳华, 黄建亮, 卫炀, 崔凯, 陈良惠 2011 60 098401]

    [5]

    Xiong D Y, Li N, Li Z F, Zhen H L, Lu W 2007 Chin. Phys. Lett. 24 1403

    [6]
    [7]

    Hu W D, Chen X S, Ye Z H, Feng A L, Yin F, Zhang B, Liao L, Lu W 2013 IEEE J. Sel. Top. Quantum Electro. 19 4100107

    [8]
    [9]

    Hu W D, Chen X S, Ye Z H, Lu W 2011 Appl. Phys. Lett. 99 091101

    [10]
    [11]
    [12]

    Hoffman A W, Corrales E, Love P J, Rosbecka J, Merrill M 2004 Proceedings of SPIE, Glasgow, Scotland, United Kingdom, June 21-22, 2004 p59

    [13]
    [14]

    Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory 1 1

    [15]
    [16]

    Meng Q D, Zhang X L, Zhang L W, Lü Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese) [孟庆端, 张晓玲, 张立文, 吕衍秋 2012 61 190701]

    [17]
    [18]

    Zhang X L, Meng Q D, Yu Q, Zhang L W, Lü Y Q 2013 J. Mech. Sci. Technol. 27 1809

    [19]
    [20]
    [21]

    Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143

    [22]

    Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855

    [23]
    [24]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta 357–358 1

    [25]
    [26]
    [27]

    Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052

    [28]

    Meng Q D, Yu Q, Zhang L W, Lü Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese) [孟庆端, 余倩, 张立文, 吕衍秋 2012 61 226103]

    [29]
    [30]

    Nawab Y, Tardif X, Boyard N, Sobotka V, Casari P, Jacquemin F 2012 Compos. Sci. Technol. 73 81

    [31]
    [32]

    Merzlyakov M, McKenna G B, Simon S L 2006 Compos. Part A 37 585

    [33]
    [34]

    Zhao L G, Warrior N A, Long A C 2007 Mater. Sci. Eng. A 452–453 483

  • [1] Cao Yu, Liu Chao-Ying, Zhao Yao, Na Yan-Ling, Jiang Chong-Xu, Wang Chang-Gang, Zhou Jing, Yu Hao. Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [2] Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211525
    [3] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [4] Jiang Wei, Zhao Huan, Wang Guo-Cui, Wang Xin-Ke, Han Peng, Sun Wen-Feng, Ye Jia-Sheng, Feng Sheng-Fei, Zhang Yan. Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging. Acta Physica Sinica, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [5] Cao Yu,  Zhu Xin-Yun,  Chen Han-Bo,  Wang Chang-Gang,  Zhang Xin-Tong,  Hou Bing-Dong,  Shen Ming-Ren,  Zhou Jing. Simulation and optimal design of antimony selenide thin film solar cells. Acta Physica Sinica, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [6] Zhang Xiao-Ling, Si Le-Fei, Meng Qing-Duan, Lü Yan-Qiu, Si Jun-Jie. Structural model of InSb IRFPAs including underfill curing process. Acta Physica Sinica, 2017, 66(1): 016102. doi: 10.7498/aps.66.016102
    [7] Gu Wen-Hao, Chang Sheng-Jiang, Fan Fei, Zhang Xuan-Zhou. InSb based subwavelength array for terahertz wave focusing. Acta Physica Sinica, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [8] Meng Qing-Duan, Yu Qian, Zhang Li-Wen, Lü Yan-Qiu. Mechanical parameters selection in InSb focal plane array detector normal direction. Acta Physica Sinica, 2012, 61(22): 226103. doi: 10.7498/aps.61.226103
    [9] Meng Qing-Duan, Zhang Xiao-Ling, Zhang Li-Wen, Lü Yan-Qiu. Structural modeling of 128× 128 InSb focal plane array detector. Acta Physica Sinica, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [10] Wang Li, Bi Si-Wen, Wang Guo-Guo. Multimode squeezed light generation in a three-plane-mirror confocal cavity. Acta Physica Sinica, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [11] Qiao Hui, Liao Yi, Hu Wei-Da, Deng Yi, Yuan Yong-Gang, Zhang Qin-Yao, Li Xiang-Yang, Gong Hai-Mei. Real-time study of γ irradiation on Hg1-xCdxTe focal plane photodiodes. Acta Physica Sinica, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [12] YU ZHEN-ZHONG, JIN GANG, CHEN XIN-QIANG, MA KE-JUN. ANOMALOUS IMPURITY SEGREGATION IN InSb SINGLE CRYSTALS. Acta Physica Sinica, 1980, 29(1): 19-24. doi: 10.7498/aps.29.19
    [13] YU ZHEN-ZHONG, JIN GANG, CHEN XIN-QIANG, MA KE-JUN. ON THE FACETS AND TWIN FORMATION IN THE GROWTH OF InSb SINGLE CRYSTALS. Acta Physica Sinica, 1980, 29(1): 11-18. doi: 10.7498/aps.29.11
    [14] WANG GOO-WEN, BAO YAN-PENG, CAO JIN-RUI, ZHANG GUANG-YONG. THE EFFECTS OF PLANE STRESS ON FOUR EXCITON LINE SERIES IN CUPROUS OXIDE CRYSTAL. Acta Physica Sinica, 1966, 22(7): 743-748. doi: 10.7498/aps.22.743
    [15] WU TZU-CHIANG, TANG TING-YUAN. THE NOISE OF THE p-TYPE INDIUM ANTIMONIDE. Acta Physica Sinica, 1966, 22(2): 205-213. doi: 10.7498/aps.22.205
    [16] SHU HUNG-DAR, LIN LAN-YING. HEAT TREATMENT OF INDIUM ANTIMONIDE. Acta Physica Sinica, 1966, 22(6): 698-707. doi: 10.7498/aps.22.698
    [17] HUANG CHII-SHENG, TANG TING-YUAN. RECOMBINATION PROCESSES OF CARRIERS IN INDIUM ANTIMONIDE. Acta Physica Sinica, 1965, 21(5): 1038-1048. doi: 10.7498/aps.21.1038
    [18] SHAW NAN, LIU YI-HUAN. X-RAY MEASUREMENT OF THE THERMAL EXPANSION OF GERMANIUM, SILICON, INDIUM ANTIMONIDE AND GALLIUM ARSENIDE. Acta Physica Sinica, 1964, 20(8): 699-704. doi: 10.7498/aps.20.699
    [19] LIN LAN-YING, SHU HUNG-DAR. THE MECHANICAL DAMAGE OF INDIUM ANTIMONIDE. Acta Physica Sinica, 1964, 20(12): 1268-1277. doi: 10.7498/aps.20.1268
    [20] . Acta Physica Sinica, 1962, 18(3): 175-176. doi: 10.7498/aps.18.175
Metrics
  • Abstract views:  5797
  • PDF Downloads:  510
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2014
  • Accepted Date:  09 April 2014
  • Published Online:  05 August 2014

/

返回文章
返回
Baidu
map