搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于样本熵的听觉神经锁相机理的实验分析

朱莉 邓娟 吴建华 周南润

引用本文:
Citation:

基于样本熵的听觉神经锁相机理的实验分析

朱莉, 邓娟, 吴建华, 周南润

Experimental analysis of auditory mechanism of neural phase-locking based on sample entropy

Zhu Li, Deng Juan, Wu Jian-Hua, Zhou Nan-Run
PDF
导出引用
  • 锁相是指系统的响应与周期性刺激的特定相位同步的物理现象. 听觉神经的锁相对揭示人的听觉认知基本的神经机理及改善听觉感知有重要意义. 然而, 现有研究主要集中于心理物理方法和幅度谱分析, 不能有效区分包络响应和时域细节结构响应, 不能直观反映神经锁相. 本文主要利用拔靴法和离散傅里叶变换, 提出了基于样本熵的时域细节结构频率跟随响应(temporal-fine-structure-related frequency following response, FFRT)的神经锁相值(phase locking value, PLV)计算方法, 用于分析神经物理实验数据. 两个脑电实验结果表明: FFRT的PLV样本熵显著大于包络相关频率跟随响应(envelope-related frequency following response, FFRE)的PLV, 且二者正交独立, 新方法能有效地分别反映听觉系统对包络和时间细节结构的锁相机理; 基频处的响应主要来源于FFRE的锁相; 基频处, 不可分辨谐波成分包络的锁相能力优于对可分辨谐波; 基频缺失时, 畸变产物是不同的听觉神经通路的FFRE的混合; 谐波处, FFRE 集中于低频, FFRT则集中于中、高频; 听觉神经元锁相能力与声源的频率可分辨性相关. FFRT的PLV方法克服了现有FFR分析的局限性, 可用于深入研究听觉神经机理.
    Phase-locking is a physical phenomenon that refers to a system response which is synchronized with a specific phase of the periodic stimulus. The auditory neural phase-locking plays an important role in revealing the basic neural mechanism of auditory cognition and improving auditory perception. In the existing auditory researches, psychophysical and amplitude spectral methods are mainly adopted. However, those two methods cannot differentiate the envelope-related auditory response from the temporal-fine-structure-related auditory response, and cannot reveal the neural phase-locking mechanism directly either. In this study, a phase locking value (PLV), based on sample entropy, bootstrapping and discrete Fourier transform, is proposed for analyzing the temporal-fine-structure-related frequency following response (FFRT). The proposed PLV is applied to computing neural and physical data. Two electroencephalography experiments are carried out. Results show that the sample entropy of FFRT's PLV is significantly greater than that of FFRE's PLV, and the two PLVs are orthogonal and independent. Thus, the PLVs of FFRE and FFRT reveal the auditory phase-locking mechanisms effectively. In addition, the response to fundamental frequency is mainly attributed to the envelope-related phase locking. And human auditory capability of phase locking to the envelope of the unresolved frequency is superior to the capability of phase-locking to the envelope of the resolved frequency. Moreover, in the case of missing fundamental frequency, the distortion product is the mixture of FFRE in various auditory neural paths. Also, FFRE concentrates at the low harmonic frequencies, while FFRT concentrates at the mid and high order harmonic frequencies. Therefore, the auditory neural phase-locking is related to the frequency resolution of sound. In conclusion, the proposed method overcomes some disadvantages of existing FFR analyses, making it beneficial to exploring auditory neural mechanisms.
      通信作者: 周南润, znr21@163.com
    • 基金项目: 国家自然科学基金(批准号: 61463035, 61262084)、江西省自然科学基金(批准号: 20142BAB217022, 20122BAB211020)和江西省教育厅科技项目(批准号: GJJ14193)资助的课题.
      Corresponding author: Zhou Nan-Run, znr21@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61463035, 61262084), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20142BAB217022, 20122BAB211020), and the Natural Science Foundation of Jiangxi Education Commission, China (Grant No. GJJ14193).
    [1]

    Moore B C J, Patterson R D, Winter I M, Carlyon R P, Gockel H E 2013 Basic Aspects of Hearing: Physiology and Perception (New York: Springer) pp12-25

    [2]

    Shen B K, Wang J F, Zeng T 2006 Chin. Phys. Lett. 23 3380

    [3]

    Thatcher R W 2012 Dev. Neuropsychol. 37 476

    [4]

    Yang L X, Chen K A, Zhang B R, Liang Y 2014 Acta Phys. Sin. 63 134304(in Chinese) [杨立学, 陈克安, 张瑞冰, 梁雍 2014 63 134304]

    [5]

    Du Y, Buchsbaum B R, Grady C L, Alain C 2014 Proc. Natl. Acad. Sci. USA 111 7126

    [6]

    Lehmann A, Schönwiesner M 2014 PloS one 9 e85442

    [7]

    Ruggles D, Bharadwaj H, Shinn-Cunningham B G 2012 Curr. Biol. 22 1417

    [8]

    Wu X B, Mo J, Yang M H, Zheng Q H, Gu H G, Ren W 2008 Chin. Phys. Lett. 25 2799

    [9]

    Huang X L, Huo C Y, Si J F, Liu H X 2014 Acta Phys. Sin. 63 100503(in Chinese) [黄晓林, 霍铖宇, 司峻峰, 刘红星 2014 63 100503]

    [10]

    Peeters G, Giordano B L, Susini P, Misdariis N, MaAdams S 2011 J. Acoust. Soc. Am. 130 2902

    [11]

    Ali M S, Saravanakumar R 2015 Chin. Phys. B 24 050201

    [12]

    Wang J S, Wang M L, Li X L, Niebur E 2015 Chin. Phys. B 24 038701

    [13]

    Qin F, Zhang Q X, Deng X H 2012 Chin. Phys. B 21 040701

    [14]

    Ding X L, Li Y Y 2014 Acta Phys. Sin. 63 248701(in Chinese) [丁学利, 李玉叶 2014 63 248701]

    [15]

    Plack C J , Oxenham A J, Popper A N, Fay R 2005 Pitch (New York: Springer) pp169-233

    [16]

    Moore B C 2008 J. Assoc. Res. Oto. 9 399

    [17]

    Ruggles D, Bharadwaj H, Shinn-Cunningham B G 2011 Proc. Natl. Acad. Sci. USA 108 15516

    [18]

    Zeng F G, Nie K, Stickney G S, Kong Y Y, Vongphoe M, Bhargave A, Wei C, Cao K 2008 Proc. Natl. Acad. Sci. USA 102 2293

    [19]

    Smith Z M, Delgutte B, Oxenham A J 2002 Nature 416 87

    [20]

    Zhu L 2013 Ph. D. Dissertation (Beijiing: Tsinghua University) (in Chinese) [朱莉 2013 博士学位论文(北京: 清华大学)]

    [21]

    Hopkins K, Moore B C 2009 J. Acoust. Soc. Am. 125 442

    [22]

    Zhu L, Bharadwaj H, Xia J, Shinn-Cunningham B G 2013 J. Acoust. Soc. Am. 134 384

    [23]

    Oxenham A J, Micheyl C, Keebler M V 2009 J. Acoust. Soc. Am. 125 2189

    [24]

    Brown C A, Bacon S P 2010 Hear. Res. 266 52

  • [1]

    Moore B C J, Patterson R D, Winter I M, Carlyon R P, Gockel H E 2013 Basic Aspects of Hearing: Physiology and Perception (New York: Springer) pp12-25

    [2]

    Shen B K, Wang J F, Zeng T 2006 Chin. Phys. Lett. 23 3380

    [3]

    Thatcher R W 2012 Dev. Neuropsychol. 37 476

    [4]

    Yang L X, Chen K A, Zhang B R, Liang Y 2014 Acta Phys. Sin. 63 134304(in Chinese) [杨立学, 陈克安, 张瑞冰, 梁雍 2014 63 134304]

    [5]

    Du Y, Buchsbaum B R, Grady C L, Alain C 2014 Proc. Natl. Acad. Sci. USA 111 7126

    [6]

    Lehmann A, Schönwiesner M 2014 PloS one 9 e85442

    [7]

    Ruggles D, Bharadwaj H, Shinn-Cunningham B G 2012 Curr. Biol. 22 1417

    [8]

    Wu X B, Mo J, Yang M H, Zheng Q H, Gu H G, Ren W 2008 Chin. Phys. Lett. 25 2799

    [9]

    Huang X L, Huo C Y, Si J F, Liu H X 2014 Acta Phys. Sin. 63 100503(in Chinese) [黄晓林, 霍铖宇, 司峻峰, 刘红星 2014 63 100503]

    [10]

    Peeters G, Giordano B L, Susini P, Misdariis N, MaAdams S 2011 J. Acoust. Soc. Am. 130 2902

    [11]

    Ali M S, Saravanakumar R 2015 Chin. Phys. B 24 050201

    [12]

    Wang J S, Wang M L, Li X L, Niebur E 2015 Chin. Phys. B 24 038701

    [13]

    Qin F, Zhang Q X, Deng X H 2012 Chin. Phys. B 21 040701

    [14]

    Ding X L, Li Y Y 2014 Acta Phys. Sin. 63 248701(in Chinese) [丁学利, 李玉叶 2014 63 248701]

    [15]

    Plack C J , Oxenham A J, Popper A N, Fay R 2005 Pitch (New York: Springer) pp169-233

    [16]

    Moore B C 2008 J. Assoc. Res. Oto. 9 399

    [17]

    Ruggles D, Bharadwaj H, Shinn-Cunningham B G 2011 Proc. Natl. Acad. Sci. USA 108 15516

    [18]

    Zeng F G, Nie K, Stickney G S, Kong Y Y, Vongphoe M, Bhargave A, Wei C, Cao K 2008 Proc. Natl. Acad. Sci. USA 102 2293

    [19]

    Smith Z M, Delgutte B, Oxenham A J 2002 Nature 416 87

    [20]

    Zhu L 2013 Ph. D. Dissertation (Beijiing: Tsinghua University) (in Chinese) [朱莉 2013 博士学位论文(北京: 清华大学)]

    [21]

    Hopkins K, Moore B C 2009 J. Acoust. Soc. Am. 125 442

    [22]

    Zhu L, Bharadwaj H, Xia J, Shinn-Cunningham B G 2013 J. Acoust. Soc. Am. 134 384

    [23]

    Oxenham A J, Micheyl C, Keebler M V 2009 J. Acoust. Soc. Am. 125 2189

    [24]

    Brown C A, Bacon S P 2010 Hear. Res. 266 52

  • [1] 陈宇威, 房涛, 范影乐, 佘青山. 通道阻塞与噪声对多室神经元响应状态影响的内在机理.  , 2024, 73(19): 190501. doi: 10.7498/aps.73.20240967
    [2] 李惟嘉, 申晓红, 李亚安. 一种无偏差的多通道多尺度样本熵算法.  , 2024, 73(11): 110502. doi: 10.7498/aps.73.20231133
    [3] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊. 锁相放大器的研究进展.  , 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [4] 杨孝敬, 杨阳, 李淮周, 钟宁. 基于模糊近似熵的抑郁症患者静息态功能磁共振成像信号复杂度分析.  , 2016, 65(21): 218701. doi: 10.7498/aps.65.218701
    [5] 郭家梁, 钟宁, 马小萌, 张明辉, 周海燕. 基于振幅-周期二维特征的脑电样本熵分析.  , 2016, 65(19): 190501. doi: 10.7498/aps.65.190501
    [6] 雷敏, 孟光, 张文明, Nilanjan Sarkar. 基于虚拟开车环境的自闭症儿童脑电样本熵.  , 2016, 65(10): 108701. doi: 10.7498/aps.65.108701
    [7] 郭业才, 周林锋. 基于脉冲耦合神经网络和图像熵的各向异性扩散模型研究.  , 2015, 64(19): 194204. doi: 10.7498/aps.64.194204
    [8] 李家强, 蔡洪渊, 陈金立, 李鹏, 葛俊祥. 基于扩展信源熵值的穿墙成像雷达墙体强杂波抑制.  , 2015, 64(19): 198402. doi: 10.7498/aps.64.198402
    [9] 张宏, 丁炯, 童勤业, 程千流. 双耳幅值差确定声源方向的神经信息处理机理研究.  , 2015, 64(18): 188701. doi: 10.7498/aps.64.188701
    [10] 程生毅, 陈善球, 董理治, 刘文劲, 王帅, 杨平, 敖明武, 许冰. 交连值对斜率响应矩阵和迭代矩阵稀疏度的影响.  , 2014, 63(7): 074206. doi: 10.7498/aps.63.074206
    [11] 黄晓林, 霍铖宇, 司峻峰, 刘红星. 等概率符号化样本熵应用于脑电分析.  , 2014, 63(10): 100503. doi: 10.7498/aps.63.100503
    [12] 张昀, 张志涌, 于舒娟. 基于幅值相位型离散Hopfield神经网络的多进制振幅键控盲检测.  , 2012, 61(14): 140701. doi: 10.7498/aps.61.140701
    [13] 李承, 石丹, 邹云屏. 一种具有正弦基函数权值的反馈型神经网络模型.  , 2012, 61(7): 070701. doi: 10.7498/aps.61.070701
    [14] 孟庆林, 原猛, 牟宏宇, 陈友元, 冯海泓. 包络调制率和载波频率对听觉时间调制检测能力的影响.  , 2012, 61(16): 164302. doi: 10.7498/aps.61.164302
    [15] 丁炯, 张宏, 童勤业. 蝙蝠听觉神经系统如何在复杂环境中识别昆虫.  , 2012, 61(15): 150505. doi: 10.7498/aps.61.150505
    [16] 王炜, 张琪昌, 王雪娇. 待定固有频率法在分析系统混沌临界值问题中的应用.  , 2009, 58(8): 5162-5168. doi: 10.7498/aps.58.5162
    [17] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析.  , 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [18] 庄建军, 宁新宝, 邹 鸣, 孙 飙, 杨 希. 两种熵测度在量化射击运动员短时心率变异性信号复杂度上的一致性.  , 2008, 57(5): 2805-2811. doi: 10.7498/aps.57.2805
    [19] 邓新华, 刘念华, 刘根泉. 单负材料光子晶体异质结构的频率响应.  , 2007, 56(12): 7280-7285. doi: 10.7498/aps.56.7280
    [20] 屈世显, 沈中毅. 非晶铁中位形熵与信息维的压力响应.  , 1993, 42(7): 1112-1116. doi: 10.7498/aps.42.1112
计量
  • 文章访问数:  6335
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-12
  • 修回日期:  2015-04-23
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map