搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进功率谱熵的抑郁症脑电信号活跃性研究

王凯明 钟宁 周海燕

引用本文:
Citation:

基于改进功率谱熵的抑郁症脑电信号活跃性研究

王凯明, 钟宁, 周海燕

Activity analysis of depression electroencephalogram based on modified power spectral entropy

Wang Kai-Ming, Zhong Ning, Zhou Hai-Yan
PDF
导出引用
  • 采用非线性动力学方法研究脑精神疾病是近年来国内外学者研究的热点和趋势. 针对脑精神疾病的研究和诊断中缺少客观有效的量化参数和量化指标的状况,提出了一种根据对时间序列功率谱划分而定义的谱熵,然后用其计算和分析脑电信号谱熵的方法. 通过数据仿真试验证明该谱熵和信号活跃性之间存在正相关关系. 基于这种相关性,应用该方法对抑郁症患者和正常对照组的脑电信号功率谱熵进行了数值计算,然后进行了分析对比和统计检验. 实验结果表明:抑郁症患者脑电信号的功率谱熵在部分脑区显著弱于正常健康人. 证明该谱熵能够表征大脑电生理活动状况,提供反映其活动性强弱的信息,可以作为度量大脑电生理活动性的一个参数. 这对于能否将该功率谱熵作为诊断脑精神疾病的物理参数具有积极意义.
    A method is proposed to calculate and analyze electro-encephalogram signal to improve the situation that there is an urgent need for an effective quantitative indicator to describe brain mental disorders. The method defines a spectral entropy in terms of the power spectrum division of time series. Then, the entropy is applied to numerical calculation of electroencephalogram signals of depression patients and normal control group. Meanwhile, the differences are compared between them. Experimental results show that the power spectral entropy in depression patients is significantly weaker than the normal healthy people's in some brain regions. Further analysis proves two facts. One is that the entropy is positively correlated to brain electrical physiological activity, and the other tells that the entropy can be used as a parameter to measure brain electrical activity, to characterize brain electrical physiological activities, and to provide the activity intensity information. This paper determines that the power spectral entropy for electroencephalogram plays an important role in diagnosis of brain mental disorder.
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB744605,2014CB744603)、国家国际科技合作专项(批准号:2013DFA32180)和国家自然科学基金(批准号:61272345)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB744605, 2014CB744603), the International Science and Technology Cooperation Program of China (Grant No. 2013DFA32180), and the National Natural Science Foundation of China (Grant No. 61272345).
    [1]

    Sadock B J, Sadock V A, Ruiz P 2008 Kaplan Sadock's Comprehensive Textbook of Psychiatry, (9th Ed.), (United States: Lippincott Williams and Wilkings) p1647

    [2]
    [3]

    Xie Y, Xu J X, Yang H J, Hu S J 2002 Acta Phys. Sin. 51 205 (in Chinese)[谢勇, 徐健学, 杨红军, 胡三觉 2002 51 205]

    [4]
    [5]

    Meng Q F, Zhou W D, Chen Y H, Peng Y H 2010 Acta Phys. Sin. 59 123 (in Chinese)[孟庆芳, 周卫东, 陈月辉, 彭玉华 2010 59 123]

    [6]

    You R Y, Chen Z, Xu S C, Wu B X 2004 Acta Phys. Sin. 53 2882 (in Chinese)[游荣义, 陈忠, 徐慎初, 吴伯僖 2004 53 2882]

    [7]
    [8]

    Bian H R, Wang J, Han C X, Deng B, Wei X L, Che Y Q 2011 Acta Phys. Sin. 60 118701 (in Chinese)[边洪瑞, 王江, 韩春晓, 邓斌, 魏熙乐, 车艳秋 2011 60 118701]

    [9]
    [10]
    [11]

    Ma Q L, Bian C H, Wang J 2010 Acta Phys. Sin. 59 4480 (in Chinese)[马千里, 卞春花, 王俊 2010 59 4480]

    [12]

    Lim J H, Khang E J, Lee T H, Kim I H, Maeng S E, Lee J W 2013 Phys. Lett. A 377 2542

    [13]
    [14]

    Wang J, Zhao D Q 2012 Chin. Phys. B 21 028703

    [15]
    [16]

    Fang X L, Jiang Z L 2007 Acta Phys. Sin. 56 7330 (in Chinese)[方小玲, 姜宗来 2007 56 7330]

    [17]
    [18]
    [19]

    Liu X F, Yu W L 2008 Acta Phys. Sin. 57 2587 (in Chinese)[刘小峰, 俞文莉 2008 57 2587]

    [20]
    [21]

    Zhang M, Wang J 2013 Acta Phys. Sin. 62 038701 (in Chinese)[张梅, 王俊 2013 62 038701]

    [22]

    Wu S, Lin J, Zhang M L, Wang J 2013 Acta Phys. Sin. 62 238701 (in Chinese)[吴莎, 李锦, 张明丽, 王俊 2013 62 238701]

    [23]
    [24]

    Ignaccolo M, Latka M, Jernajczyk W, Grigolini P, West B J 2010 J. Biol. Phys. 36 185

    [25]
    [26]

    Ignaccolo M, Latka M, Jernajczyk W, Grigolini P, West B J 2010 Phys. Rev. E 81 031909

    [27]
    [28]

    Zhang W Q, Qiu L, Xiao Q, Yang H J, Zhang Q J, Wang J Y 2012 Phys. Rev. E 86 056107

    [29]
    [30]
    [31]

    Yao W P, Liu T B, Dai J F, Wang J 2014 Acta Phys. Sin. 63 078704 (in Chinese)[姚文坡, 刘铁兵, 戴加飞, 王俊 2014 63 078704]

    [32]

    Phillip P A, Chiu F L, Nick S J 2009 Phys. Rev. E 79 011915

    [33]
    [34]
    [35]

    Malihe S, Serajeddin K, Reza B 2009 Artif. Intell. Med. 47 263

    [36]

    Porporato A, Rigby J R, Daly E 2007 Phys. Rev. Lett. 98 094101

    [37]
    [38]

    Huang J H, Liu N H, Liu J T, Yu T B, He X 2010 Chin. Phys. B 19 110307

    [39]
    [40]

    Lu H X, Zhao B 2006 Chin. Phys. 15 1914

    [41]
  • [1]

    Sadock B J, Sadock V A, Ruiz P 2008 Kaplan Sadock's Comprehensive Textbook of Psychiatry, (9th Ed.), (United States: Lippincott Williams and Wilkings) p1647

    [2]
    [3]

    Xie Y, Xu J X, Yang H J, Hu S J 2002 Acta Phys. Sin. 51 205 (in Chinese)[谢勇, 徐健学, 杨红军, 胡三觉 2002 51 205]

    [4]
    [5]

    Meng Q F, Zhou W D, Chen Y H, Peng Y H 2010 Acta Phys. Sin. 59 123 (in Chinese)[孟庆芳, 周卫东, 陈月辉, 彭玉华 2010 59 123]

    [6]

    You R Y, Chen Z, Xu S C, Wu B X 2004 Acta Phys. Sin. 53 2882 (in Chinese)[游荣义, 陈忠, 徐慎初, 吴伯僖 2004 53 2882]

    [7]
    [8]

    Bian H R, Wang J, Han C X, Deng B, Wei X L, Che Y Q 2011 Acta Phys. Sin. 60 118701 (in Chinese)[边洪瑞, 王江, 韩春晓, 邓斌, 魏熙乐, 车艳秋 2011 60 118701]

    [9]
    [10]
    [11]

    Ma Q L, Bian C H, Wang J 2010 Acta Phys. Sin. 59 4480 (in Chinese)[马千里, 卞春花, 王俊 2010 59 4480]

    [12]

    Lim J H, Khang E J, Lee T H, Kim I H, Maeng S E, Lee J W 2013 Phys. Lett. A 377 2542

    [13]
    [14]

    Wang J, Zhao D Q 2012 Chin. Phys. B 21 028703

    [15]
    [16]

    Fang X L, Jiang Z L 2007 Acta Phys. Sin. 56 7330 (in Chinese)[方小玲, 姜宗来 2007 56 7330]

    [17]
    [18]
    [19]

    Liu X F, Yu W L 2008 Acta Phys. Sin. 57 2587 (in Chinese)[刘小峰, 俞文莉 2008 57 2587]

    [20]
    [21]

    Zhang M, Wang J 2013 Acta Phys. Sin. 62 038701 (in Chinese)[张梅, 王俊 2013 62 038701]

    [22]

    Wu S, Lin J, Zhang M L, Wang J 2013 Acta Phys. Sin. 62 238701 (in Chinese)[吴莎, 李锦, 张明丽, 王俊 2013 62 238701]

    [23]
    [24]

    Ignaccolo M, Latka M, Jernajczyk W, Grigolini P, West B J 2010 J. Biol. Phys. 36 185

    [25]
    [26]

    Ignaccolo M, Latka M, Jernajczyk W, Grigolini P, West B J 2010 Phys. Rev. E 81 031909

    [27]
    [28]

    Zhang W Q, Qiu L, Xiao Q, Yang H J, Zhang Q J, Wang J Y 2012 Phys. Rev. E 86 056107

    [29]
    [30]
    [31]

    Yao W P, Liu T B, Dai J F, Wang J 2014 Acta Phys. Sin. 63 078704 (in Chinese)[姚文坡, 刘铁兵, 戴加飞, 王俊 2014 63 078704]

    [32]

    Phillip P A, Chiu F L, Nick S J 2009 Phys. Rev. E 79 011915

    [33]
    [34]
    [35]

    Malihe S, Serajeddin K, Reza B 2009 Artif. Intell. Med. 47 263

    [36]

    Porporato A, Rigby J R, Daly E 2007 Phys. Rev. Lett. 98 094101

    [37]
    [38]

    Huang J H, Liu N H, Liu J T, Yu T B, He X 2010 Chin. Phys. B 19 110307

    [39]
    [40]

    Lu H X, Zhao B 2006 Chin. Phys. 15 1914

    [41]
  • [1] 景鹏, 张学军, 孙知信. 基于弹性变分模态分解的癫痫脑电信号分类方法.  , 2021, 70(1): 018702. doi: 10.7498/aps.70.20200904
    [2] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析.  , 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [3] 郭家梁, 钟宁, 马小萌, 张明辉, 周海燕. 基于振幅-周期二维特征的脑电样本熵分析.  , 2016, 65(19): 190501. doi: 10.7498/aps.65.190501
    [4] 雷敏, 孟光, 张文明, Nilanjan Sarkar. 基于虚拟开车环境的自闭症儿童脑电样本熵.  , 2016, 65(10): 108701. doi: 10.7498/aps.65.108701
    [5] 杨孝敬, 杨阳, 李淮周, 钟宁. 基于模糊近似熵的抑郁症患者静息态功能磁共振成像信号复杂度分析.  , 2016, 65(21): 218701. doi: 10.7498/aps.65.218701
    [6] 杨剑, 陈书燊, 皇甫浩然, 梁佩鹏, 钟宁. 静息态脑电信号动态功能连接分析.  , 2015, 64(5): 058701. doi: 10.7498/aps.64.058701
    [7] 张涛, 陈万忠, 李明阳. 基于AdaBoost算法的癫痫脑电信号识别.  , 2015, 64(12): 128701. doi: 10.7498/aps.64.128701
    [8] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于自适应模板法的脑电信号转移熵分析.  , 2015, 64(8): 088701. doi: 10.7498/aps.64.088701
    [9] 谢平, 杨芳梅, 陈晓玲, 杜义浩, 吴晓光. 基于多尺度传递熵的脑肌电信号耦合分析.  , 2015, 64(24): 248702. doi: 10.7498/aps.64.248702
    [10] 姚文坡, 刘铁兵, 戴加飞, 王俊. 脑电信号的多尺度排列熵分析.  , 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [11] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 改进的相对转移熵的癫痫脑电分析.  , 2014, 63(21): 218701. doi: 10.7498/aps.63.218701
    [12] 张梅, 崔超, 马千里, 干宗良, 王俊. 基于符号化部分互信息熵的多参数生物电信号的耦合分析.  , 2013, 62(6): 068704. doi: 10.7498/aps.62.068704
    [13] 吴莎, 李锦, 张明丽, 王俊. 基于改进的符号转移熵的心脑电信号耦合研究.  , 2013, 62(23): 238701. doi: 10.7498/aps.62.238701
    [14] 张梅, 王俊. 基于改进的符号相对熵的脑电信号时间不可逆性研究.  , 2013, 62(3): 038701. doi: 10.7498/aps.62.038701
    [15] 边洪瑞, 王江, 韩春晓, 邓斌, 魏熙乐, 车艳秋. 基于复杂度的针刺脑电信号特征提取.  , 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [16] 沈韡, 王俊. 基于符号相对熵的心电信号时间不可逆性分析.  , 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [17] 马千里, 卞春华, 王俊. 脑电信号的标度分析及其在睡眠状态区分中的应用.  , 2010, 59(7): 4480-4484. doi: 10.7498/aps.59.4480
    [18] 孟庆芳, 周卫东, 陈月辉, 彭玉华. 基于非线性预测效果的癫痫脑电信号的特征提取方法.  , 2010, 59(1): 123-130. doi: 10.7498/aps.59.123
    [19] 金宁德, 董 芳, 赵 舒. 气液两相流电导波动信号复杂性测度分析及其流型表征.  , 2007, 56(2): 720-729. doi: 10.7498/aps.56.720
    [20] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究.  , 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
计量
  • 文章访问数:  6063
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-17
  • 修回日期:  2014-05-12
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map