搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚拟开车环境的自闭症儿童脑电样本熵

雷敏 孟光 张文明 Nilanjan Sarkar

引用本文:
Citation:

基于虚拟开车环境的自闭症儿童脑电样本熵

雷敏, 孟光, 张文明, Nilanjan Sarkar

Sample entropy of electroencephalogram for children with autism based on virtual driving game

Lei Min, Meng Guang, Zhang Wen-Ming, Nilanjan Sarkar
PDF
导出引用
  • 自闭症谱系障碍是一种涉及感觉、情感、记忆、语言、智力、动作等认知功能和执行功能障碍的精神疾病. 本文从神经工效学角度出发, 用虚拟开车环境作为复杂多任务激励源将大脑系统与人体动作控制等有机地结合起来, 通过对脑电信号的滑动平均样本熵分析来探索自闭症儿童在虚拟开车环境中的脑活动特征. 研究发现不论是休息状态还是开车状态, 自闭症患者的滑动平均样本熵总体上低于健康者, 尤其在前额叶、颞叶、顶叶和枕叶功能区, 表明自闭症儿童的行为适应性较低. 不过, 自闭症患者的开车状态与健康受试者的休息状态比较接近, 表明虚拟开车环境或许有助于自闭症患者的干预治疗. 此外, 自闭症患者在颞叶区呈现显著性右半球优势性. 本研究为进一步深入开展自闭症疾病的机理研究及其诊断、评估和干预等研究提供一种新的研究思路.
    Autism spectrum disorder is a kind of mental disease which involves the disorders of the perception, emotion, memory, language, intelligence, thinking, action, etc. The aim of this paper is to investigate the brain activity characteristics of the children with autism during complex environments by analyzing electroencephalogram (EEG) signals from the neuroergonomics perspective. The virtual driving environment as a complex multi-task source is used to organically connect brain systems with human motion control. The 14-channel EEG signals are obtained including the EEG baseline signals on a resting state (about 3 min) and the EEG activity signals during driving (about 5 min). The method of the shift average sample entropy is proposed to deal with EEG signals in the resting and the virtual driving environments. Considering the highly complex hyper-dimensional characteristics of EEG signals, the different embedding dimensions (such as 2 and 6 dimensions) are analyzed in the sample entropy estimation. The results show that the average sample entropy values of autism spectrum disorder (ASD) subjects are lower than those of healthy subjects during resting and driving, respectively, especially in the prefrontal lobe, temporal lobe, parietal lobe and occipital lobe during resting and in temporal lobe and occipital lobe during driving. It indicates that ASD children lack the ability to adapt easily their behaviors. Meanwhile, like healthy subjects, the average sample entropy values of ASD subjects during driving are higher than those during resting as a whole. Moreover, the EEG activity signals of ASD are obviously higher than the EEG baseline signals in prefrontal lobe, frontal lobe, frontal central lobe and temporal lobe regions in 95% significant level. And for healthy subjects, the activity signals are significantly higher than the baseline signals only in parietal lobe region. Furthermore, the brain activities of ASD subjects during driving come closer to those of healthy subjects during resting. It suggests that the virtual driving environment may be helpful for the treatment of ASD individuals. In addition, the ASD and healthy subjects have a certain right hemisphere dominance in the whole region except in the parietal lobe region. In the parietal lobe region, they have some left hemisphere dominance, especially during driving. And for ASD subjects, there is the significant right hemisphere dominance in the temporal lobe in 95% confidence level no matter whether in the resting state or in the driving state. The results show that it is suitable for the shift average sample entropy analysis to study the brain activities of ASD individuals. This study will provide a new research method for the further research on the mechanism of autism and its diagnosis, evaluation and intervention.
      通信作者: 雷敏, leimin@sjtu.edu.cn
    • 基金项目: 国家自然科学基金创新研究群体科学基金(批准号:51421092)、国家自然科学基金(批准号:10872125)、上海市自然科学基金(批准号:06ZR14042)、机械系统与振动国家重点实验室基金(批准号:MSV-MS-2010-08)、校医工交叉基金项目(批准号:YG2013MS74)、美国NSF项目(批准号:0967170,1264462)和美国NIH项目(批准号:1R01MH091102-01A1,1R21MH103518-01)资助的课题.
      Corresponding author: Lei Min, leimin@sjtu.edu.cn
    • Funds: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51421092), the National Natural Science Foundation of China (Grant No. 10872125), the Natural Science Foundation of Shanghai, China (Grant No. 06ZR14042), the Research Fund of State Key Laboratory of Mechanical System and Vibration, China (Grant No. MSV-MS-2010-08), the Research Fund from Shanghai Jiao Tong University for Medical and Engineering Science, China (Grant No. YG2013MS74), the NSF Project of USA (Grant Nos. 0967170, 1264462), and the NIH Project of USA (Grant Nos. 1R01MH091102-01A1, 1R21MH103518-01).
    [1]

    Kanner L 1943 Nervous Child. 2 217

    [2]

    Ghanbari Y, Bloy L, Edgar J C, Blaskey L, Verma Ragini, Roberts T 2015 J. Autism Dev. Disord. 45 444

    [3]

    Li N, Chen G, Song X, Du W, Zheng X 2011 Epilepsy Behav. 22 786

    [4]

    Duan Y F, Wu X L, Jin F 2015 Scientia Sinica Vitae 45 820 (in Chinese) [段云峰, 吴晓丽, 金锋 2015 中国科学: 生命科学 45 820]

    [5]

    Wang J, Barstein J, Ethridge L E, Mosconi M W, Takarae Y, Sweeney J A 2013 J. Neurodev. Disord. 5 24

    [6]

    Li J, Lin Z M, Zhu L Q 2012 Prog. Biochem. Biophys. 39 952 (in Chinese) [李晶, 林珠梅, 朱莉琪 2012 生物化学与生物物理进展 39 952]

    [7]

    Hua R, Wei M P, Zhang C 2015 Sci. China: Life Sci. 58 933

    [8]

    Li Z X, Zhu L Q 2015 Prog. Biochem. Biophys. 42 1103 (in Chinese) [李占星, 朱莉琪 2015 生物化学与生物物理进展 42 1103]

    [9]

    Chen S, Zhong X, Jiang L, Zheng X, Xiong Y, Ma S, Qiu M, Huo S, Ge J, Chen Q 2016 Behav. Brain Res. 296 61

    [10]

    Stigler K A, McDonald B C, Anand A, Saykin A J, McDougle C J 2011 Brain Res. 1381 146

    [11]

    Strzelecka J 2014 Res. Autism Spectr. Disord. 8 317

    [12]

    Courchesne, E, Pierce K, Schumann C M, Redcay E, Buckwalter J A, Kennedy D P, Morgan J 2007 Neuron 56 399

    [13]

    Weinsten M, Ben-Sira L, Levy Y, Zachor D A, Itzhak E B, Artzi M, Tarrasch R, Eksteine P M, Hendler T, Bashat D B 2011 Hum. Brain Mapp. 32 534

    [14]

    Ambrosino S, Bos D J, van Raalten T R, Kobussen N A, van Belle J, Oranje B, Durston S 2014 J. Neural Transm. 121 1145

    [15]

    Chen H, Duan X, Liu F, Lu F, Ma X, Zhang Y Uddin L Q, Chen H 2016 Prog. Neuro-Psychopharmacol. Biol. Psychiatry 64 1

    [16]

    Hahamy A, Behrmann, Malach 2015 Nat. Neurosci. 18 302

    [17]

    Zhu H, Li J, Fan Y, Li X, Huang D, He S 2015 Biomed. Opt. Express 6 690

    [18]

    Billeci L, Sicca F, Maharatna K, Apicella F, Narzisi A, Campatelli G, Calderoni S, Pioggia G, Muratori F 2014 Res. Autism Spectr. Disord. 8 317

    [19]

    Chan A S, Sze S L, Cheung M C 2007 Neuropsychologia 21 74

    [20]

    Cantor D S, Thatcher R W, Hrybyk M, Kaye H 1986 J. Autism Dev. Disord. 16 169

    [21]

    Mathewson K J, Jetha M K, Drmic I E, Bryson S E, Goldberg J O, Schmidt L A 2012 Clin. Neurophysiol. 123 1798

    [22]

    Coben R, Clarke A R, Hudspeth W, Barry R J 2008 Clin. Neurophysiol. 119 1002

    [23]

    Orekhova E V, Stroganova T A, Nygren G, Tsetlin M M, Posikera I N, Gillberg C, Elam M 2007 Biol. Psychiat. 62 1022

    [24]

    Van Diessen E, Senders J, Jansen F E, Boersma M, Bruining H 2015 Eur. Arch. Psy. Clin. N. 265 537

    [25]

    Sheikhani A, Behnam H, Noroozian M, Mohammadi M R, Mohammadi M 2009 Res. Autism Spectr. Disord. 3 538

    [26]

    Sheikhani A, Behnam H, Mohammadi MR, Noroozian M, Mohammadi M 2012 J. Med. Syst. 36 957

    [27]

    Maxwell C R, Villalobos M E, Schultz R T, Dahlmann B H, Konrad K, Kohls G 2015 J. Autism Dev. Disord. 45 292

    [28]

    Tierney A L, Gabard-Durnam L, Vogel-Farley V, Tager-Flusberg H, Nelson C A 2012 PloS One 7 e39127

    [29]

    Wang X Y, Chen W X, Zhang F Q, Yang S Y, Liang C F 2013 J. Epileptol Electroneurophysiol. 22 226 (in Chinese) [王秀英, 陈文雄, 张凤琼, 杨思渊, 梁翠芳 2013 癫痫与神经电生理学杂志 22 226]

    [30]

    Chan A, Han Y, Sze S, Lau E 2015 Front. Psychol. 6 1893

    [31]

    Hashemian M, Pourghassem H 2014 Neurophysiology 46 183

    [32]

    Sheikhani A, Behnam H, Mohammadi M R, Noroozian M, Golabi P 2007 Proc of the 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors Cambridge, UK, August 19-22, 2007 p111

    [33]

    Bosl W, Tierney A, Tager-Flusberg H, Nelson C 2011 BMC Med. 9 18

    [34]

    Catarino A, Churches O, Baron-Cohen S, Andrade A, Ring H 2011 Clin. Neurophysiol. 122 2375

    [35]

    Ahmadlou M, Adeli H, Adeli A 2010 J. Clin. Neurophysiol. 27 328

    [36]

    Ahmadlou M, Adeli H, Adeli A 2012 Physica A 391 4720

    [37]

    Keh L, Chupungco A, Esguerra J 2012 Int. J. Bifurcat. Chaos 22 1250044

    [38]

    Lei M, Meng G, Sarkar N 2015 The Chinese Congress of Theoretical and Applied Mechanics 2015 Shanghai, P.R. China, August 15-18, 2015 pMS5437 (in Chinese) [雷敏, 孟光, Sarkar N 2015 中国力学大会CCTAM2015 上海, 中国, 2015年8月15-18日 pMS5437]

    [39]

    Lei M, Meng G, Fan J, Wade J, Bian D, Sarkar N 2014 24th Annual International Conference of Society for Chaos Theory in Psychology Life Sciences, Milwaukee, Wisconsin, USA, July 31-August 2 2014 p10

    [40]

    Ni L, Cao J, Wang R 2013 Comput. Math. Method Med. 2013 618743

    [41]

    Huang X L, Huo C Y, Si J F, Liu H X 2014 Acta Phys. Sin. 63 100503 (in Chinese) [黄晓林, 霍铖宇, 司峻峰, 刘红星 2014 63 100503]

    [42]

    Richman J, Moorman J 2000 Am. J. Physiol. Heart Circ. Physiol. 278 H2039

    [43]

    Zhu L, Deng J, Wu J H, Zhou N R 2015 Acta Phys. Sin. 64 184302 (in Chinese) [朱莉, 邓娟, 吴建华, 周南润 2015 64 184302]

    [44]

    Singer W 2013 Trends in Cognitive Sci. 17 616

    [45]

    Shen Z, Fang F, Yang J J 2010 Introduction to Cognitive Neuroscience (Beijing: Peking University Press) pp224-226 (in Chinese) [沈政, 方方, 杨炯炯 2010 认知神经科学导论 (北京: 北京大学出版社) 第224-226页]

    [46]

    Zhu X Q, Song Y W, Bi H Y 2014 Prog. Biochem. Biophys. 41 749 (in Chinese) [朱晓倩, 宋耀武, 毕鸿燕 2014 生物化学与生物物理进展 41 749]

  • [1]

    Kanner L 1943 Nervous Child. 2 217

    [2]

    Ghanbari Y, Bloy L, Edgar J C, Blaskey L, Verma Ragini, Roberts T 2015 J. Autism Dev. Disord. 45 444

    [3]

    Li N, Chen G, Song X, Du W, Zheng X 2011 Epilepsy Behav. 22 786

    [4]

    Duan Y F, Wu X L, Jin F 2015 Scientia Sinica Vitae 45 820 (in Chinese) [段云峰, 吴晓丽, 金锋 2015 中国科学: 生命科学 45 820]

    [5]

    Wang J, Barstein J, Ethridge L E, Mosconi M W, Takarae Y, Sweeney J A 2013 J. Neurodev. Disord. 5 24

    [6]

    Li J, Lin Z M, Zhu L Q 2012 Prog. Biochem. Biophys. 39 952 (in Chinese) [李晶, 林珠梅, 朱莉琪 2012 生物化学与生物物理进展 39 952]

    [7]

    Hua R, Wei M P, Zhang C 2015 Sci. China: Life Sci. 58 933

    [8]

    Li Z X, Zhu L Q 2015 Prog. Biochem. Biophys. 42 1103 (in Chinese) [李占星, 朱莉琪 2015 生物化学与生物物理进展 42 1103]

    [9]

    Chen S, Zhong X, Jiang L, Zheng X, Xiong Y, Ma S, Qiu M, Huo S, Ge J, Chen Q 2016 Behav. Brain Res. 296 61

    [10]

    Stigler K A, McDonald B C, Anand A, Saykin A J, McDougle C J 2011 Brain Res. 1381 146

    [11]

    Strzelecka J 2014 Res. Autism Spectr. Disord. 8 317

    [12]

    Courchesne, E, Pierce K, Schumann C M, Redcay E, Buckwalter J A, Kennedy D P, Morgan J 2007 Neuron 56 399

    [13]

    Weinsten M, Ben-Sira L, Levy Y, Zachor D A, Itzhak E B, Artzi M, Tarrasch R, Eksteine P M, Hendler T, Bashat D B 2011 Hum. Brain Mapp. 32 534

    [14]

    Ambrosino S, Bos D J, van Raalten T R, Kobussen N A, van Belle J, Oranje B, Durston S 2014 J. Neural Transm. 121 1145

    [15]

    Chen H, Duan X, Liu F, Lu F, Ma X, Zhang Y Uddin L Q, Chen H 2016 Prog. Neuro-Psychopharmacol. Biol. Psychiatry 64 1

    [16]

    Hahamy A, Behrmann, Malach 2015 Nat. Neurosci. 18 302

    [17]

    Zhu H, Li J, Fan Y, Li X, Huang D, He S 2015 Biomed. Opt. Express 6 690

    [18]

    Billeci L, Sicca F, Maharatna K, Apicella F, Narzisi A, Campatelli G, Calderoni S, Pioggia G, Muratori F 2014 Res. Autism Spectr. Disord. 8 317

    [19]

    Chan A S, Sze S L, Cheung M C 2007 Neuropsychologia 21 74

    [20]

    Cantor D S, Thatcher R W, Hrybyk M, Kaye H 1986 J. Autism Dev. Disord. 16 169

    [21]

    Mathewson K J, Jetha M K, Drmic I E, Bryson S E, Goldberg J O, Schmidt L A 2012 Clin. Neurophysiol. 123 1798

    [22]

    Coben R, Clarke A R, Hudspeth W, Barry R J 2008 Clin. Neurophysiol. 119 1002

    [23]

    Orekhova E V, Stroganova T A, Nygren G, Tsetlin M M, Posikera I N, Gillberg C, Elam M 2007 Biol. Psychiat. 62 1022

    [24]

    Van Diessen E, Senders J, Jansen F E, Boersma M, Bruining H 2015 Eur. Arch. Psy. Clin. N. 265 537

    [25]

    Sheikhani A, Behnam H, Noroozian M, Mohammadi M R, Mohammadi M 2009 Res. Autism Spectr. Disord. 3 538

    [26]

    Sheikhani A, Behnam H, Mohammadi MR, Noroozian M, Mohammadi M 2012 J. Med. Syst. 36 957

    [27]

    Maxwell C R, Villalobos M E, Schultz R T, Dahlmann B H, Konrad K, Kohls G 2015 J. Autism Dev. Disord. 45 292

    [28]

    Tierney A L, Gabard-Durnam L, Vogel-Farley V, Tager-Flusberg H, Nelson C A 2012 PloS One 7 e39127

    [29]

    Wang X Y, Chen W X, Zhang F Q, Yang S Y, Liang C F 2013 J. Epileptol Electroneurophysiol. 22 226 (in Chinese) [王秀英, 陈文雄, 张凤琼, 杨思渊, 梁翠芳 2013 癫痫与神经电生理学杂志 22 226]

    [30]

    Chan A, Han Y, Sze S, Lau E 2015 Front. Psychol. 6 1893

    [31]

    Hashemian M, Pourghassem H 2014 Neurophysiology 46 183

    [32]

    Sheikhani A, Behnam H, Mohammadi M R, Noroozian M, Golabi P 2007 Proc of the 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors Cambridge, UK, August 19-22, 2007 p111

    [33]

    Bosl W, Tierney A, Tager-Flusberg H, Nelson C 2011 BMC Med. 9 18

    [34]

    Catarino A, Churches O, Baron-Cohen S, Andrade A, Ring H 2011 Clin. Neurophysiol. 122 2375

    [35]

    Ahmadlou M, Adeli H, Adeli A 2010 J. Clin. Neurophysiol. 27 328

    [36]

    Ahmadlou M, Adeli H, Adeli A 2012 Physica A 391 4720

    [37]

    Keh L, Chupungco A, Esguerra J 2012 Int. J. Bifurcat. Chaos 22 1250044

    [38]

    Lei M, Meng G, Sarkar N 2015 The Chinese Congress of Theoretical and Applied Mechanics 2015 Shanghai, P.R. China, August 15-18, 2015 pMS5437 (in Chinese) [雷敏, 孟光, Sarkar N 2015 中国力学大会CCTAM2015 上海, 中国, 2015年8月15-18日 pMS5437]

    [39]

    Lei M, Meng G, Fan J, Wade J, Bian D, Sarkar N 2014 24th Annual International Conference of Society for Chaos Theory in Psychology Life Sciences, Milwaukee, Wisconsin, USA, July 31-August 2 2014 p10

    [40]

    Ni L, Cao J, Wang R 2013 Comput. Math. Method Med. 2013 618743

    [41]

    Huang X L, Huo C Y, Si J F, Liu H X 2014 Acta Phys. Sin. 63 100503 (in Chinese) [黄晓林, 霍铖宇, 司峻峰, 刘红星 2014 63 100503]

    [42]

    Richman J, Moorman J 2000 Am. J. Physiol. Heart Circ. Physiol. 278 H2039

    [43]

    Zhu L, Deng J, Wu J H, Zhou N R 2015 Acta Phys. Sin. 64 184302 (in Chinese) [朱莉, 邓娟, 吴建华, 周南润 2015 64 184302]

    [44]

    Singer W 2013 Trends in Cognitive Sci. 17 616

    [45]

    Shen Z, Fang F, Yang J J 2010 Introduction to Cognitive Neuroscience (Beijing: Peking University Press) pp224-226 (in Chinese) [沈政, 方方, 杨炯炯 2010 认知神经科学导论 (北京: 北京大学出版社) 第224-226页]

    [46]

    Zhu X Q, Song Y W, Bi H Y 2014 Prog. Biochem. Biophys. 41 749 (in Chinese) [朱晓倩, 宋耀武, 毕鸿燕 2014 生物化学与生物物理进展 41 749]

  • [1] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析.  , 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [2] 郭家梁, 钟宁, 马小萌, 张明辉, 周海燕. 基于振幅-周期二维特征的脑电样本熵分析.  , 2016, 65(19): 190501. doi: 10.7498/aps.65.190501
    [3] 杨孝敬, 杨阳, 李淮周, 钟宁. 基于模糊近似熵的抑郁症患者静息态功能磁共振成像信号复杂度分析.  , 2016, 65(21): 218701. doi: 10.7498/aps.65.218701
    [4] 张涛, 陈万忠, 李明阳. 基于AdaBoost算法的癫痫脑电信号识别.  , 2015, 64(12): 128701. doi: 10.7498/aps.64.128701
    [5] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于自适应模板法的脑电信号转移熵分析.  , 2015, 64(8): 088701. doi: 10.7498/aps.64.088701
    [6] 朱莉, 邓娟, 吴建华, 周南润. 基于样本熵的听觉神经锁相机理的实验分析.  , 2015, 64(18): 184302. doi: 10.7498/aps.64.184302
    [7] 谢平, 杨芳梅, 陈晓玲, 杜义浩, 吴晓光. 基于多尺度传递熵的脑肌电信号耦合分析.  , 2015, 64(24): 248702. doi: 10.7498/aps.64.248702
    [8] 姚文坡, 刘铁兵, 戴加飞, 王俊. 脑电信号的多尺度排列熵分析.  , 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [9] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 改进的相对转移熵的癫痫脑电分析.  , 2014, 63(21): 218701. doi: 10.7498/aps.63.218701
    [10] 黄晓林, 霍铖宇, 司峻峰, 刘红星. 等概率符号化样本熵应用于脑电分析.  , 2014, 63(10): 100503. doi: 10.7498/aps.63.100503
    [11] 王凯明, 钟宁, 周海燕. 基于改进功率谱熵的抑郁症脑电信号活跃性研究.  , 2014, 63(17): 178701. doi: 10.7498/aps.63.178701
    [12] 张梅, 崔超, 马千里, 干宗良, 王俊. 基于符号化部分互信息熵的多参数生物电信号的耦合分析.  , 2013, 62(6): 068704. doi: 10.7498/aps.62.068704
    [13] 吴莎, 李锦, 张明丽, 王俊. 基于改进的符号转移熵的心脑电信号耦合研究.  , 2013, 62(23): 238701. doi: 10.7498/aps.62.238701
    [14] 张梅, 王俊. 基于改进的符号相对熵的脑电信号时间不可逆性研究.  , 2013, 62(3): 038701. doi: 10.7498/aps.62.038701
    [15] 沈韡, 王俊. 基于符号相对熵的心电信号时间不可逆性分析.  , 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [16] 马千里, 卞春华, 王俊. 脑电信号的标度分析及其在睡眠状态区分中的应用.  , 2010, 59(7): 4480-4484. doi: 10.7498/aps.59.4480
    [17] 孟庆芳, 周卫东, 陈月辉, 彭玉华. 基于非线性预测效果的癫痫脑电信号的特征提取方法.  , 2010, 59(1): 123-130. doi: 10.7498/aps.59.123
    [18] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析.  , 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [19] 庄建军, 宁新宝, 邹 鸣, 孙 飙, 杨 希. 两种熵测度在量化射击运动员短时心率变异性信号复杂度上的一致性.  , 2008, 57(5): 2805-2811. doi: 10.7498/aps.57.2805
    [20] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究.  , 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
计量
  • 文章访问数:  6972
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-02-05
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map