搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于振幅-周期二维特征的脑电样本熵分析

郭家梁 钟宁 马小萌 张明辉 周海燕

引用本文:
Citation:

基于振幅-周期二维特征的脑电样本熵分析

郭家梁, 钟宁, 马小萌, 张明辉, 周海燕

Sample entropy analysis of electroencephalogram based on the two-dimensional feature of amplitude and period

Guo Jia-Liang, Zhong Ning, Ma Xiao-Meng, Zhang Ming-Hui, Zhou Hai-Yan
PDF
导出引用
  • 样本熵可以有效反映一维时间序列中新模式的生成概率,但缺乏对二维序列复杂度的表征能力.基于对传统样本熵方法的改进,提出一种在振幅-周期二维空间描述波形复杂度的方法,二维样本熵反映了波形振动在振幅-周期空间中新模式的生成概率.通过仿真实验证明了这种方法描述波形复杂度的有效性,当波形的复杂度特征表现为振幅-周期的交互作用时,二维样本熵对复杂度的描述比一维条件下的样本熵更加有效.基于二维样本熵对抑郁症组和对照组的脑电复杂度进行分析,结果表明,抑郁症组在Alpha频段左侧顶区和左侧枕区的二维样本熵显著低于对照组,表明在上述频段和位置,抑郁症患者脑电中新模式的生成概率显著低于正常人,这一特征可能成为抑郁症的潜在生物标记.
    Sample entropy, a complexity measure that quantifies the new pattern generation rate of time series, has been widely applied to physiological signal analysis. It can effectively reflect the pattern complexity of one-dimensional sequences, such as the information contained in amplitude or period features. However, the traditional method usually ignores the interaction between amplitude and period in time series, such as electroencephalogram (EEG) signals. To address this issue, in this study, we propose a new method to describe the pattern complexity of waveform in a two-dimensional space. In this method, the local peaks of the signals are first extracted, and the variation range and the duration time between the adjacent peaks are calculated as the instantaneous amplitude and period. Then the amplitude and period sequences are combined into a two-dimensional sequence to calculate the sample entropy based on the amplitude and period information. In addition, in order to avoid the influence of the different units in the two dimensions, we use the Jaccard distance to measure the similarity of the amplitude-period bi-vectors in the waveforms, which is different from the one-dimensional method. The Jaccard distance is defined as the ratio of the different area to the combined area of two rectangles containing the amplitude-period bi-vectors in the Cartesian coordinate system. To verify the effectiveness of the method, we construct five sets of simulative waveforms in which the numbers of patterns are completely equal in one-dimensional space of amplitude or period but the numbers in two-dimensional space are significantly different (P0.00001). Simulation results show that the two-dimensional sample entropy could effectively reflect the different complexities of the five signals (P0.00001), while the sample entropy in one-dimensional space of amplitude or period cannot do. The results indicate that compared with the one-dimensional sample entropy, the two-dimensional sample entropy is very effective to describe and distinguish the complexity of interactive patterns based on amplitude and period features in waveforms. The entropy is also used to analyze the resting state EEG signals between well-matched depression patient and healthy control groups. Signals in three separated frequency bands (Theta, Alpha, Beta) and ten brain regions (bilateral: frontal, central, parietal, temporal, occipital) are analyzed. Experimental results show that in the Alpha band and in the left parietal and occipital regions, the two-dimensional sample entropy in depression is significantly lower than that in the healthy group (P0.01), indicating the disability of depression patients in generation of various EEG patterns. These features might become potential biomarkers of depressions.
      通信作者: 周海燕, zhouhaiyan@bjut.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB744600)、国家国际科技合作专项(批准号:2013DFA32180)和国家自然科学基金(批准号:61420106005,61272345)资助的课题.
      Corresponding author: Zhou Hai-Yan, zhouhaiyan@bjut.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB744600), the International Science and Technology Cooperation Program of China (Grant No. 2013DFA32180), and the National Natural Science Foundation of China (Grant Nos. 61420106005, 61272345).
    [1]

    Pincus S M 1991 Proc. Natl. Acad. Sci. USA 88 2297

    [2]

    Richman J S, Moorman J R 2000 Am. J. Physiol.-Heart C. 278 2039

    [3]

    Bruce E N, Bruce M C, Vennelaganti S 2009 J. Clin. Neurophysiol. 26 257

    [4]

    Zhu L, Deng J, Wu J H, Zhou N R 2015 Acta Phys. Sin. 64 184302 (in Chinese) [朱莉, 邓娟, 吴建华, 周南润2015 64 184302]

    [5]

    Lei M, Meng G, Zhang W M, Sarkar N 2016 Acta Phys. Sin. 65 108701 (in Chinese) [雷敏, 孟光, 张文明, Nilanjan Sarkar 2016 65 108701]

    [6]

    Alcaraz R, Rieta J J 2010 Biomed. Signal. Proces. 5 1

    [7]

    Kim D J, Jeong J, Chae J H, Park S, Kim S Y, Go H J, Paik I H, Kim K S, Choi B 2000 Psychiat. Res-Neuroim. 98 177

    [8]

    Lee Y J, Zhu Y S, Xu Y H, Shen M F, Zhang H X, Thakor N V 2001 Clin. Neurophysiol. 112 1288

    [9]

    Li Y J, Tong S B, Liu D, Gai Y, Wang X Y, Wang J J, Qiu Y H, Zhu Y S 2008 Clin. Neurophysiol. 119 1232

    [10]

    Ahmadlou M, Adeli H, Adeli A 2012 Int. J. Psychophysiol. 85 206

    [11]

    Bachmann M, Lass J, Suhhova A, Hinrikus H 2013 Comput. Math. Method. M. 2013 251638

    [12]

    Zavala-Yoe R, Ramirez-Mendoza R, Cordero L M 2015 Springerplus 4 437

    [13]

    Abasolo D, Hornero R, Espino P, Alvarez D, Poza J 2006 Physiol. Meas. 27 241

    [14]

    Takahashi T, Cho R Y, Mizuno T, Kikuchi M, Murata T, Takahashi K, Wada Y 2010 Neuroimage 51 173

    [15]

    Okazaki R, Takahashi T, Ueno K, Takahashi K, Higashima M, Wada Y 2013 J. Affect. Disorders 150 389

    [16]

    Li X L, Li D, Liang Z H, Voss L J, Sleigh J W 2008 Clin. Neurophysiol. 119 2465

    [17]

    Zhang T, Chen W Z, Li M Y 2016 Acta Phys. Sin. 65 038703 (in Chinese) [张涛, 陈万忠, 李明阳2016 65 038703]

    [18]

    Lin P F, Tsao J, Lo M T, Lin C, Chang Y C 2015 Entropy 17 560

    [19]

    Ahmed M U, Mandic D P 2011 Phys. Rev. E 84 061918

    [20]

    Orzechowska A, Filip M, Galecki P 2015 Med. Sci. Monitor 21 3643

    [21]

    Pampallona S, Bollini P, Tibaldi G, Kupelnick B, Munizza C 2004 Arch. Gen. Psychiat. 61 714

  • [1]

    Pincus S M 1991 Proc. Natl. Acad. Sci. USA 88 2297

    [2]

    Richman J S, Moorman J R 2000 Am. J. Physiol.-Heart C. 278 2039

    [3]

    Bruce E N, Bruce M C, Vennelaganti S 2009 J. Clin. Neurophysiol. 26 257

    [4]

    Zhu L, Deng J, Wu J H, Zhou N R 2015 Acta Phys. Sin. 64 184302 (in Chinese) [朱莉, 邓娟, 吴建华, 周南润2015 64 184302]

    [5]

    Lei M, Meng G, Zhang W M, Sarkar N 2016 Acta Phys. Sin. 65 108701 (in Chinese) [雷敏, 孟光, 张文明, Nilanjan Sarkar 2016 65 108701]

    [6]

    Alcaraz R, Rieta J J 2010 Biomed. Signal. Proces. 5 1

    [7]

    Kim D J, Jeong J, Chae J H, Park S, Kim S Y, Go H J, Paik I H, Kim K S, Choi B 2000 Psychiat. Res-Neuroim. 98 177

    [8]

    Lee Y J, Zhu Y S, Xu Y H, Shen M F, Zhang H X, Thakor N V 2001 Clin. Neurophysiol. 112 1288

    [9]

    Li Y J, Tong S B, Liu D, Gai Y, Wang X Y, Wang J J, Qiu Y H, Zhu Y S 2008 Clin. Neurophysiol. 119 1232

    [10]

    Ahmadlou M, Adeli H, Adeli A 2012 Int. J. Psychophysiol. 85 206

    [11]

    Bachmann M, Lass J, Suhhova A, Hinrikus H 2013 Comput. Math. Method. M. 2013 251638

    [12]

    Zavala-Yoe R, Ramirez-Mendoza R, Cordero L M 2015 Springerplus 4 437

    [13]

    Abasolo D, Hornero R, Espino P, Alvarez D, Poza J 2006 Physiol. Meas. 27 241

    [14]

    Takahashi T, Cho R Y, Mizuno T, Kikuchi M, Murata T, Takahashi K, Wada Y 2010 Neuroimage 51 173

    [15]

    Okazaki R, Takahashi T, Ueno K, Takahashi K, Higashima M, Wada Y 2013 J. Affect. Disorders 150 389

    [16]

    Li X L, Li D, Liang Z H, Voss L J, Sleigh J W 2008 Clin. Neurophysiol. 119 2465

    [17]

    Zhang T, Chen W Z, Li M Y 2016 Acta Phys. Sin. 65 038703 (in Chinese) [张涛, 陈万忠, 李明阳2016 65 038703]

    [18]

    Lin P F, Tsao J, Lo M T, Lin C, Chang Y C 2015 Entropy 17 560

    [19]

    Ahmed M U, Mandic D P 2011 Phys. Rev. E 84 061918

    [20]

    Orzechowska A, Filip M, Galecki P 2015 Med. Sci. Monitor 21 3643

    [21]

    Pampallona S, Bollini P, Tibaldi G, Kupelnick B, Munizza C 2004 Arch. Gen. Psychiat. 61 714

  • [1] 李永宁, 谢逸群, 王音. 二维铁电In2Se3/InSe垂直异质结能带的应力调控.  , 2021, 70(22): 227701. doi: 10.7498/aps.70.20211158
    [2] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [3] 雷敏, 孟光, 张文明, Nilanjan Sarkar. 基于虚拟开车环境的自闭症儿童脑电样本熵.  , 2016, 65(10): 108701. doi: 10.7498/aps.65.108701
    [4] 杨孝敬, 杨阳, 李淮周, 钟宁. 基于模糊近似熵的抑郁症患者静息态功能磁共振成像信号复杂度分析.  , 2016, 65(21): 218701. doi: 10.7498/aps.65.218701
    [5] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性.  , 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [6] 田子建, 李玮祥, 樊京. 基于双三角形金属条的二维可衍生超材料性能分析.  , 2015, 64(3): 034102. doi: 10.7498/aps.64.034102
    [7] 朱莉, 邓娟, 吴建华, 周南润. 基于样本熵的听觉神经锁相机理的实验分析.  , 2015, 64(18): 184302. doi: 10.7498/aps.64.184302
    [8] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 改进的相对转移熵的癫痫脑电分析.  , 2014, 63(21): 218701. doi: 10.7498/aps.63.218701
    [9] 黄晓林, 霍铖宇, 司峻峰, 刘红星. 等概率符号化样本熵应用于脑电分析.  , 2014, 63(10): 100503. doi: 10.7498/aps.63.100503
    [10] 王凯明, 钟宁, 周海燕. 基于改进功率谱熵的抑郁症脑电信号活跃性研究.  , 2014, 63(17): 178701. doi: 10.7498/aps.63.178701
    [11] 杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣. 十字环型左手材料单元结构设计与仿真.  , 2012, 61(16): 164101. doi: 10.7498/aps.61.164101
    [12] 王海侠, 吕英华, 张洪欣, 吴艳玲. 基于双Z形金属条的双入射型左手材料研究.  , 2011, 60(3): 034101. doi: 10.7498/aps.60.034101
    [13] 边洪瑞, 王江, 韩春晓, 邓斌, 魏熙乐, 车艳秋. 基于复杂度的针刺脑电信号特征提取.  , 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [14] 吴一全, 张金矿. 二维直方图θ划分最大Shannon熵图像阈值分割.  , 2010, 59(8): 5487-5495. doi: 10.7498/aps.59.5487
    [15] 郭云胜, 张雪峰. 一种结构简单的二维左手材料设计及仿真研究.  , 2010, 59(12): 8584-8590. doi: 10.7498/aps.59.8584
    [16] 唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才. 基于二维最小Tsallis交叉熵的图像阈值分割方法.  , 2009, 58(1): 9-15. doi: 10.7498/aps.58.9
    [17] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析.  , 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [18] 庄建军, 宁新宝, 邹 鸣, 孙 飙, 杨 希. 两种熵测度在量化射击运动员短时心率变异性信号复杂度上的一致性.  , 2008, 57(5): 2805-2811. doi: 10.7498/aps.57.2805
    [19] 肖春燕, 雷银照. 分层球形导体中任意位置直流电流元产生电位的解析解.  , 2005, 54(4): 1950-1957. doi: 10.7498/aps.54.1950
    [20] 倪培根, 马博琴, 程丙英, 张道中. 二维LiNbO3非线性光子晶体.  , 2003, 52(8): 1925-1928. doi: 10.7498/aps.52.1925
计量
  • 文章访问数:  6859
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-10
  • 修回日期:  2016-07-10
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map