-
Phase-locking is a physical phenomenon that refers to a system response which is synchronized with a specific phase of the periodic stimulus. The auditory neural phase-locking plays an important role in revealing the basic neural mechanism of auditory cognition and improving auditory perception. In the existing auditory researches, psychophysical and amplitude spectral methods are mainly adopted. However, those two methods cannot differentiate the envelope-related auditory response from the temporal-fine-structure-related auditory response, and cannot reveal the neural phase-locking mechanism directly either. In this study, a phase locking value (PLV), based on sample entropy, bootstrapping and discrete Fourier transform, is proposed for analyzing the temporal-fine-structure-related frequency following response (FFRT). The proposed PLV is applied to computing neural and physical data. Two electroencephalography experiments are carried out. Results show that the sample entropy of FFRT's PLV is significantly greater than that of FFRE's PLV, and the two PLVs are orthogonal and independent. Thus, the PLVs of FFRE and FFRT reveal the auditory phase-locking mechanisms effectively. In addition, the response to fundamental frequency is mainly attributed to the envelope-related phase locking. And human auditory capability of phase locking to the envelope of the unresolved frequency is superior to the capability of phase-locking to the envelope of the resolved frequency. Moreover, in the case of missing fundamental frequency, the distortion product is the mixture of FFRE in various auditory neural paths. Also, FFRE concentrates at the low harmonic frequencies, while FFRT concentrates at the mid and high order harmonic frequencies. Therefore, the auditory neural phase-locking is related to the frequency resolution of sound. In conclusion, the proposed method overcomes some disadvantages of existing FFR analyses, making it beneficial to exploring auditory neural mechanisms.
-
Keywords:
- neural mechanism of audition /
- phase locking value /
- sample entropy /
- frequency following response
[1] Moore B C J, Patterson R D, Winter I M, Carlyon R P, Gockel H E 2013 Basic Aspects of Hearing: Physiology and Perception (New York: Springer) pp12-25
[2] Shen B K, Wang J F, Zeng T 2006 Chin. Phys. Lett. 23 3380
[3] Thatcher R W 2012 Dev. Neuropsychol. 37 476
[4] Yang L X, Chen K A, Zhang B R, Liang Y 2014 Acta Phys. Sin. 63 134304(in Chinese) [杨立学, 陈克安, 张瑞冰, 梁雍 2014 63 134304]
[5] Du Y, Buchsbaum B R, Grady C L, Alain C 2014 Proc. Natl. Acad. Sci. USA 111 7126
[6] Lehmann A, Schönwiesner M 2014 PloS one 9 e85442
[7] Ruggles D, Bharadwaj H, Shinn-Cunningham B G 2012 Curr. Biol. 22 1417
[8] Wu X B, Mo J, Yang M H, Zheng Q H, Gu H G, Ren W 2008 Chin. Phys. Lett. 25 2799
[9] Huang X L, Huo C Y, Si J F, Liu H X 2014 Acta Phys. Sin. 63 100503(in Chinese) [黄晓林, 霍铖宇, 司峻峰, 刘红星 2014 63 100503]
[10] Peeters G, Giordano B L, Susini P, Misdariis N, MaAdams S 2011 J. Acoust. Soc. Am. 130 2902
[11] Ali M S, Saravanakumar R 2015 Chin. Phys. B 24 050201
[12] Wang J S, Wang M L, Li X L, Niebur E 2015 Chin. Phys. B 24 038701
[13] Qin F, Zhang Q X, Deng X H 2012 Chin. Phys. B 21 040701
[14] Ding X L, Li Y Y 2014 Acta Phys. Sin. 63 248701(in Chinese) [丁学利, 李玉叶 2014 63 248701]
[15] Plack C J , Oxenham A J, Popper A N, Fay R 2005 Pitch (New York: Springer) pp169-233
[16] Moore B C 2008 J. Assoc. Res. Oto. 9 399
[17] Ruggles D, Bharadwaj H, Shinn-Cunningham B G 2011 Proc. Natl. Acad. Sci. USA 108 15516
[18] Zeng F G, Nie K, Stickney G S, Kong Y Y, Vongphoe M, Bhargave A, Wei C, Cao K 2008 Proc. Natl. Acad. Sci. USA 102 2293
[19] Smith Z M, Delgutte B, Oxenham A J 2002 Nature 416 87
[20] Zhu L 2013 Ph. D. Dissertation (Beijiing: Tsinghua University) (in Chinese) [朱莉 2013 博士学位论文(北京: 清华大学)]
[21] Hopkins K, Moore B C 2009 J. Acoust. Soc. Am. 125 442
[22] Zhu L, Bharadwaj H, Xia J, Shinn-Cunningham B G 2013 J. Acoust. Soc. Am. 134 384
[23] Oxenham A J, Micheyl C, Keebler M V 2009 J. Acoust. Soc. Am. 125 2189
[24] Brown C A, Bacon S P 2010 Hear. Res. 266 52
-
[1] Moore B C J, Patterson R D, Winter I M, Carlyon R P, Gockel H E 2013 Basic Aspects of Hearing: Physiology and Perception (New York: Springer) pp12-25
[2] Shen B K, Wang J F, Zeng T 2006 Chin. Phys. Lett. 23 3380
[3] Thatcher R W 2012 Dev. Neuropsychol. 37 476
[4] Yang L X, Chen K A, Zhang B R, Liang Y 2014 Acta Phys. Sin. 63 134304(in Chinese) [杨立学, 陈克安, 张瑞冰, 梁雍 2014 63 134304]
[5] Du Y, Buchsbaum B R, Grady C L, Alain C 2014 Proc. Natl. Acad. Sci. USA 111 7126
[6] Lehmann A, Schönwiesner M 2014 PloS one 9 e85442
[7] Ruggles D, Bharadwaj H, Shinn-Cunningham B G 2012 Curr. Biol. 22 1417
[8] Wu X B, Mo J, Yang M H, Zheng Q H, Gu H G, Ren W 2008 Chin. Phys. Lett. 25 2799
[9] Huang X L, Huo C Y, Si J F, Liu H X 2014 Acta Phys. Sin. 63 100503(in Chinese) [黄晓林, 霍铖宇, 司峻峰, 刘红星 2014 63 100503]
[10] Peeters G, Giordano B L, Susini P, Misdariis N, MaAdams S 2011 J. Acoust. Soc. Am. 130 2902
[11] Ali M S, Saravanakumar R 2015 Chin. Phys. B 24 050201
[12] Wang J S, Wang M L, Li X L, Niebur E 2015 Chin. Phys. B 24 038701
[13] Qin F, Zhang Q X, Deng X H 2012 Chin. Phys. B 21 040701
[14] Ding X L, Li Y Y 2014 Acta Phys. Sin. 63 248701(in Chinese) [丁学利, 李玉叶 2014 63 248701]
[15] Plack C J , Oxenham A J, Popper A N, Fay R 2005 Pitch (New York: Springer) pp169-233
[16] Moore B C 2008 J. Assoc. Res. Oto. 9 399
[17] Ruggles D, Bharadwaj H, Shinn-Cunningham B G 2011 Proc. Natl. Acad. Sci. USA 108 15516
[18] Zeng F G, Nie K, Stickney G S, Kong Y Y, Vongphoe M, Bhargave A, Wei C, Cao K 2008 Proc. Natl. Acad. Sci. USA 102 2293
[19] Smith Z M, Delgutte B, Oxenham A J 2002 Nature 416 87
[20] Zhu L 2013 Ph. D. Dissertation (Beijiing: Tsinghua University) (in Chinese) [朱莉 2013 博士学位论文(北京: 清华大学)]
[21] Hopkins K, Moore B C 2009 J. Acoust. Soc. Am. 125 442
[22] Zhu L, Bharadwaj H, Xia J, Shinn-Cunningham B G 2013 J. Acoust. Soc. Am. 134 384
[23] Oxenham A J, Micheyl C, Keebler M V 2009 J. Acoust. Soc. Am. 125 2189
[24] Brown C A, Bacon S P 2010 Hear. Res. 266 52
Catalog
Metrics
- Abstract views: 6336
- PDF Downloads: 161
- Cited By: 0