Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of vacancy defect and Mg substitution on electronic structure, magnetic and optical properties of wurtzite structure (Ga, Mn)N

Xu Da-Qing Li Pei-Xian Lou Yong-Le Yue Gai-Li Zhang Chao Zhang Yan Liu Ning-Zhuang Yang Bo

Citation:

Effects of vacancy defect and Mg substitution on electronic structure, magnetic and optical properties of wurtzite structure (Ga, Mn)N

Xu Da-Qing, Li Pei-Xian, Lou Yong-Le, Yue Gai-Li, Zhang Chao, Zhang Yan, Liu Ning-Zhuang, Yang Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Developing GaN based dilute magnetic semiconductors by making use of the preparation techniques for GaN materials,and combining the electrical and optical properties of existing GaN electronic devices with magnetic property will enable various novel spintronic devices to be made.The key enabler for the wide application of dilute magnetic semiconductors is room temperature ferromagnetism.Many research groups have reported numerous samples of GaN based dilute magnetic semiconductors with distinctively different magnetic properties.It may be argued that no consensus exists on the origin and control of ferromagnetism in these materials.There exists little work focusing on different doping modes for double-Mn doped GaN,GaN co-doped with Mn and non magnetic elements,and Mn doped GaN with vacancy defects,although such a doping method can significantly modify the electronic structures,magnetic and optical properties of these materials.Therefore,it is meaningful to study the effects of these different doping techniques on the electronic structure,magnetic and optical properties of Mn doped GaN so as to understand the magnetic exchange interaction in Mn doped GaN and improve its physical properties.In the calculation in this paper,the generalized gradient approximation (GGA+U) plane wave pseudopotential method under the framework of spin density functional theory is used.Models for the geometric structures of undoped wurtzite GaN supercell,three different doping modes of double Mn doped GaN, (Mn,Mg) co-doped GaN,and Mn-doped GaN with vacancy defects are constructed.The band structures,densities of states,energies and optical properties of these models are analyzed.The results show that the Curie temperature of the Mn doped GaN system can reach above room temperature.Compared with that of pure GaN,the volume of the Mn doped GaN system increases slightly.It is also discovered that the total energy and formation energy of the doped system increase with the Mn-Mn distance increasing,thereby lowering the stability of the system and making doping more difficult.Analysis reveals that co-doping the GaN with (Mn,Mg) can neither effectively increase the total magnetic moment of the doped system,nor improve the Curie temperature effect.The defects induced by Ga vacancies and N vacancies in the doped system hinder the stable ferromagnetic coupling from forming.In addition,the incorporation of Mn ions forms the spin polarized impurity band near the Fermi level.Due to the transitions between different electronic states in the spin polarized impurity band,the peak around 0.6868 eV in the imaginary part of the dielectric function and the peak near 1.25 eV in the optical absorption spectrum appear,respectively.This work offers a new insight into the understanding of the magnetic mechanisms and optical properties of Mn doped GaN,and will be conducible to improving its physical properties.
      Corresponding author: Xu Da-Qing, xustxdq@163.com
    • Funds: Project supported by the Scientific Research Program Funded of Shaanxi Provincial Education Department, China (Grant No. 11JK0912), Scientific Research Foundation of Xi'an University of Science and Technology, China (Grant No. 2010011), Doctoral Research Startup Fund of Xi'an University of Science and Technology, China (Grant No. 2010QDJ029), National Defense Advance Research Foundation, China (Grant No. 9140A08040410DZ106), and the Basic Research Program of Ministry of Education, China (Grant No. JY10000925005).
    [1]

    Lin Y T, Wadekar P V, Kao H S, Chen T H, Huang H C, Ho N J, Chen Q Y, Tu L W 2014 Appl. Phys. Lett. 104 062414

    [2]

    Kunert G, Dobkowska S, Li T, Reuther H, Kruse C, Figge S, Jakiela R, Bonanni A, Grenzer J, Stefanowicz W, Borany J von, Sawicki M, Dietl T, Hommel D 2012 Appl. Phys. Lett. 101 022413

    [3]

    Bihler C, Gerstmann U, Hoeb M, Graf T, Gjukic M, Schmidt W G, Stutzmann M, Brandt M S 2009 Phys. Rev. B 80 205205

    [4]

    Sonoda S, Shimizu S, Sasaki T, Yamamoto Y, Hori H 2002 J. Cryst. Growth 237–239 1358

    [5]

    Sasaki T, Sonoda S, Yamamoto Y, Suga K I, Shimizu S, Kindo K, Hidenobu H 2002 J. Appl. Phys. 91 7911

    [6]

    Cui X G, Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L, Gu S L, Han P, Shi Y, Zheng Y D 2008 Appl. Phys. Lett. 92 152116

    [7]

    Jeon H C, Kang T W, Kim T W, Kang J, Chang K J 2005 Appl. Phys. Lett. 87 092501

    [8]

    Shi Y, Zhang Y X, Jiang C Z, Fu D J, Fan X J 2007 Physica B 388 82

    [9]

    Ploog K H, Dhar S, Trampert A 2003 J. Vac. Sci. Teehnol. B 21 1756

    [10]

    Zhang Z, Schwingenschlogl U, Roqan I S 2014 J. Appl. Phys. 116 183905

    [11]

    Wang Q J, Wang J B, Zhong X L, Tan Q H, Hu Z, Zhou Y C 2012 Appl. Phys. Lett. 100 132407

    [12]

    Roul B, Rajpalke M K, Bhat T N, Kumar M, Kalghatgi A T, Krupanidhi S B, Kumar N, Sundaresan A 2011 Appl. Phys. Lett. 99 162512

    [13]

    Peng H, Xiang H J, Wei S H, Li S S, Xia J B, Li J 2009 Phys. Rev. Lett. 102 017201

    [14]

    Xu B, Pan B C 2009 J. Appl. Phys. 105 103710

    [15]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008 Phys. Rev. B 77 205411

    [16]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Vanderbilt T D 1990 Phys. Rev. B 41 7892

    [19]

    Gian W, Skowronski M, Rohrer G S 1996 MRS Proceedings 423 475

    [20]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [21]

    Akai H 1998 Phys. Rev. Lett. 81 3002

    [22]

    Dalpian G M, Wei S H, Gong, X G, Silva A J R D, Fazzio A 2006 Solid State Commun. 138 353

    [23]

    Anderson P W 1950 J. Appl. Phys. 79 350

    [24]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [25]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [26]

    Hou Q Y, Xu Z C, Wu Y, Zhao E J 2015 Acta Phys. Sin. 64 167201 (in Chinese) [侯清玉, 许镇潮, 乌云, 赵二俊2015 64 167201]

    [27]

    Shen X C 1992 The Spectrum and Optical Property of Semiconductor ( Beijing: Science Press) p77(in Chinese) [沈学础2002半导体光谱和光学性质(北京: 科学出版社)第77页]

    [28]

    Shen J, Wei B, Zhou J, Shen S Z, Xue G J, Liu H X, Chen W 2015 Acta Phys. Sin. 64 217801 (in Chinese) [沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文2015 64 217801]

    [29]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

  • [1]

    Lin Y T, Wadekar P V, Kao H S, Chen T H, Huang H C, Ho N J, Chen Q Y, Tu L W 2014 Appl. Phys. Lett. 104 062414

    [2]

    Kunert G, Dobkowska S, Li T, Reuther H, Kruse C, Figge S, Jakiela R, Bonanni A, Grenzer J, Stefanowicz W, Borany J von, Sawicki M, Dietl T, Hommel D 2012 Appl. Phys. Lett. 101 022413

    [3]

    Bihler C, Gerstmann U, Hoeb M, Graf T, Gjukic M, Schmidt W G, Stutzmann M, Brandt M S 2009 Phys. Rev. B 80 205205

    [4]

    Sonoda S, Shimizu S, Sasaki T, Yamamoto Y, Hori H 2002 J. Cryst. Growth 237–239 1358

    [5]

    Sasaki T, Sonoda S, Yamamoto Y, Suga K I, Shimizu S, Kindo K, Hidenobu H 2002 J. Appl. Phys. 91 7911

    [6]

    Cui X G, Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L, Gu S L, Han P, Shi Y, Zheng Y D 2008 Appl. Phys. Lett. 92 152116

    [7]

    Jeon H C, Kang T W, Kim T W, Kang J, Chang K J 2005 Appl. Phys. Lett. 87 092501

    [8]

    Shi Y, Zhang Y X, Jiang C Z, Fu D J, Fan X J 2007 Physica B 388 82

    [9]

    Ploog K H, Dhar S, Trampert A 2003 J. Vac. Sci. Teehnol. B 21 1756

    [10]

    Zhang Z, Schwingenschlogl U, Roqan I S 2014 J. Appl. Phys. 116 183905

    [11]

    Wang Q J, Wang J B, Zhong X L, Tan Q H, Hu Z, Zhou Y C 2012 Appl. Phys. Lett. 100 132407

    [12]

    Roul B, Rajpalke M K, Bhat T N, Kumar M, Kalghatgi A T, Krupanidhi S B, Kumar N, Sundaresan A 2011 Appl. Phys. Lett. 99 162512

    [13]

    Peng H, Xiang H J, Wei S H, Li S S, Xia J B, Li J 2009 Phys. Rev. Lett. 102 017201

    [14]

    Xu B, Pan B C 2009 J. Appl. Phys. 105 103710

    [15]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008 Phys. Rev. B 77 205411

    [16]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Vanderbilt T D 1990 Phys. Rev. B 41 7892

    [19]

    Gian W, Skowronski M, Rohrer G S 1996 MRS Proceedings 423 475

    [20]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [21]

    Akai H 1998 Phys. Rev. Lett. 81 3002

    [22]

    Dalpian G M, Wei S H, Gong, X G, Silva A J R D, Fazzio A 2006 Solid State Commun. 138 353

    [23]

    Anderson P W 1950 J. Appl. Phys. 79 350

    [24]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [25]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [26]

    Hou Q Y, Xu Z C, Wu Y, Zhao E J 2015 Acta Phys. Sin. 64 167201 (in Chinese) [侯清玉, 许镇潮, 乌云, 赵二俊2015 64 167201]

    [27]

    Shen X C 1992 The Spectrum and Optical Property of Semiconductor ( Beijing: Science Press) p77(in Chinese) [沈学础2002半导体光谱和光学性质(北京: 科学出版社)第77页]

    [28]

    Shen J, Wei B, Zhou J, Shen S Z, Xue G J, Liu H X, Chen W 2015 Acta Phys. Sin. 64 217801 (in Chinese) [沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文2015 64 217801]

    [29]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

  • [1] Wang Quan-Jie, Deng Yu-Ge, Wang Ren-Zong, Liu Xiang-Jun. Interface engineering moderated interfacial thermal conductance of GaN-based heterointerfaces. Acta Physica Sinica, 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [2] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [3] Qiao Jian-Liang, Xu Yuan, Gao You-Tang, Niu Jun, Chang Ben-Kang. Quantum efficiency for reflection-mode varied doping negative-electron-affinity GaN photocathode. Acta Physica Sinica, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [4] Hou Qing-Yu, Jia Xiao-Fang, Xu Zhen-Chao, Zhao Chun-Wang. Effect of Ni doping on optical and magnetic properties of ZnO. Acta Physica Sinica, 2017, 66(11): 117401. doi: 10.7498/aps.66.117401
    [5] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [6] Hou Zhen-Tao, Li Yan-Ru, Liu He-Yan, Dai Xue-Fang, Liu Guo-Dong, Liu Cai-Chi, Li Ying. Effect of Ga vacancy on the magnetism in GaN:Gd: First-principles calculation. Acta Physica Sinica, 2016, 65(12): 127102. doi: 10.7498/aps.65.127102
    [7] Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen. First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3. Acta Physica Sinica, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [8] Huang Bin-Bin, Xiong Chuan-Bing, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Tang Ying-Wen, Quan Zhi-Jue, Xu Long-Quan, Zhang Meng, Wang Li, Fang Wen-Qing, Liu Jun-Lin, Jiang Feng-Yi. Electroluminescence properties of vertical structure GaN based LED on silicon and copper submount at different temperatures and current densities. Acta Physica Sinica, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [9] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [10] Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong. Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Physica Sinica, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [11] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [12] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Wang Xiao-Hui, Xu Yuan. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [13] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [14] Qiao Jian-Liang, Tian Si, Chang Ben-Kang, Du Xiao-Qing, Gao Pin. Activation mechanism of negative electron affinity GaN photocathode. Acta Physica Sinica, 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [15] Zhou Mei, Chang Qing-Ying, Zhao De-Gang. A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector. Acta Physica Sinica, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [16] Zhou Mei, Zhao De-Gang. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [17] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling, Shen Guang-Di. Effects of optimized contact scheme on the performance of high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [18] Zhou Mei, Zuo Shu-Hua, Zhao De-Gang. A new Schottky barrier structure of GaN-based ultraviolet photodetector. Acta Physica Sinica, 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [19] Wan Wei, Tang Chun-Yan, Wang Yu-Mei, Li Fang-Hua. A study on the stacking fault in GaN crystals by high-resolution electron microscope imaging. Acta Physica Sinica, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [20] Shen Yao-Wen, Kang Jun-Yong. . Acta Physica Sinica, 2002, 51(3): 645-648. doi: 10.7498/aps.51.645
Metrics
  • Abstract views:  5994
  • PDF Downloads:  226
  • Cited By: 0
Publishing process
  • Received Date:  29 May 2016
  • Accepted Date:  18 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map