搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni掺杂对ZnO磁光性能的影响

侯清玉 贾晓芳 许镇潮 赵春旺

引用本文:
Citation:

Ni掺杂对ZnO磁光性能的影响

侯清玉, 贾晓芳, 许镇潮, 赵春旺

Effect of Ni doping on optical and magnetic properties of ZnO

Hou Qing-Yu, Jia Xiao-Fang, Xu Zhen-Chao, Zhao Chun-Wang
PDF
导出引用
  • 在掺杂浓度范围为2.78%-6.25%(物质的量分数)时,Ni掺杂ZnO体系吸收光谱分布的实验结果存在争议,目前仍然没有合理的理论解释.为了解决存在的争议,在电子自旋极化状态下,采用密度泛函理论框架下的第一性原理平面波超软赝势方法,构建不同Ni掺杂量的ZnO超胞模型,分别对模型进行几何结构优化和能量计算.结果表明,Ni掺杂量越大,形成能越高,掺杂越难,体系稳定性越低,掺杂体系带隙越窄,吸收光谱红移越显著.采用LDA(局域密度近似)+U方法调整带隙.结果表明,掺杂体系的铁磁性居里温度能够达到室温以上,磁矩来源于p-d态杂化电子交换作用.Ni掺杂量越高,掺杂体系的磁矩越小.另外还发现Ni原子在ZnO中间隙掺杂时,掺杂体系在紫外光和可见光区的吸收光谱发生蓝移现象.
    Nowadays, the experimental results of absorption spectrum distribution of Ni doped ZnO suffer controversy when the mole fraction of impurity is in a range from 2.78% to 6.25%. However, there is still lack of a reasonable theoretical explanation. To solve this problem, the geometry optimizations and energies of different Ni-doped ZnO systems are calculated at a state of electron spin polarization by adopting plane-wave ultra-soft pseudo potential technique based on the density function theory. Calculation results show that the volume parameter and lattice parameter of the doping system are smaller than those of the pure ZnO, and they decrease with the increase of the concentration of Ni. The formation energy in the O-rich condition is lower than that in the Zn-rich condition for the same doping system, and the system is more stable in the O-rich condition. With the same doping concentration of Ni, the formation energies of the systems with interstitial Ni and Ni replacing Zn cannot be very different. The formation energy of the system with Ni replacing Zn increases with the increase of the concentration of Ni, the doping becomes difficult, the stability of the doping system decreases, the band gap becomes narrow and the absorption spectrum is obviously red shifted. The Mulliken atomic population method is used to calculate the orbital average charges of doping systems. The results show that the sum of the charge transitions between the s state orbital and d state orbital of Ni2+ ions in the doping systems Zn0.9722Ni0.0278O, Zn0.9583Ni0.0417O and Zn0.9375Ni0.0625O supercells are all closed to +2. Thus, it is considered that the valence of Ni doped in ZnO is +2, and the Ni is present as a Ni2+ ion in the doping system. The ionized impurity concentrations of all the doping systems exceed the critical doping concentration for the Mott phase change of semiconductor ZnO, which extremely matches the condition of degeneration, and the doping systems are degenerate semiconductors. Ni-doped ZnO has a conductive hole polarization rate of up to nearly 100%. Then the band gaps are corrected via the LDA (local density approximation)+U method. The calculation results show that the doping system possesses high Curie temperature and can achieve room temperature ferromagnetism. The magnetic moment is derived from the hybrid coupling effect of p-d exchange action. Meanwhile, the magnetic moment of the doping system becomes weak with the increase of the concentration of Ni. In addition, the absorption spectrum of Ni-interstitial ZnO is blue-shifted in the ultraviolet and visible light bands.
      通信作者: 侯清玉, by0501119@126.com
    • 基金项目: 国家自然科学基金(批准号:61366008,61664007,11672175)资助的课题.
      Corresponding author: Hou Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 61664007, 11672175).
    [1]

    Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Rabani E, Banin U 2011 Science 332 77

    [2]

    Beaulac R, Schneider L, Archer P I, Bacher G, Gamelin D R 2009 Science 325 973

    [3]

    Risbud A S, Spaldin N A, Chen Z Q, Stemmer S S 2003 Phys. Rev. B 68 205202

    [4]

    Bouloudenine M, Viart N, Colis S, Kortus J D 2005 Appl. Phys. Lett. 87 052501

    [5]

    Thota S, Dutta T, Kumar J 2006 J. Phys. Condens. Matter 18 2473

    [6]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [7]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [8]

    Wang X, Xu J, Zhang B, Yu H, Wang J, Zhang X, Yu J, Li Q 2006 Adv. Mater. 18 2476

    [9]

    Pearton S J, Abernathy C R, Overberg M E, Thaler G T, Norton D P 2003 J. Appl. Phys. 93 1

    [10]

    Azarang M, Shuhaimi A, Yousefi R, Sookhakian M 2014 J. Appl. Phys. 116 084307

    [11]

    Yousefi R, Sheini F J, Cheraghizade M, Gandomani S K, Sa'aedi A, Huang N M, Basirun W J, Azarang M 2015 Mater. Sci. Semicond. Process. 32 152

    [12]

    Khan I, Khan S, Nongjai R, Ahmed H, Khan W 2013 Opt. Mater. 35 1189

    [13]

    Rekha K, Nirmala M, Nair M G, Anukaliani A 2010 Physics B 405 3180

    [14]

    Gerami A M, Zadeh M V 2016 J. Supercond. Nov. Magn. 29 1295

    [15]

    Haq B U, Ahmed R, Abdellatif G, Shaari A, Butt F K, Kanoun M B, Said S G 2016 Front. Phys. 11 117101

    [16]

    Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]

    [17]

    Guruvammal D, Selvaraj S, Sundar S M 2016 J. Alloy. Compd. 682 850

    [18]

    Vijayaparkavi A P, Senthilkumaar S 2012 J. Supercond. Nov. Magn. 25 427

    [19]

    Jadhav J, Biswas S 2016 J. Alloy. Compd. 664 71

    [20]

    Pal B, Sarkar D, Giri P K 2015 Appl. Surf. Sci. 356 804

    [21]

    Wahab M S A, Jilani A, Yahia I S, Ghamdi A A A 2016 Superlattice. Microst. 94 108

    [22]

    Wang S, Li P, Liu H, Li J B, Wei Y 2010 J. Alloy. Compd. 505 362

    [23]

    Ma X G, Wu Y, Lv Y, Zhu Y F 2013 Phys. Chem. C 117 26029

    [24]

    Vijayaprasath G, Muruganrn R, Mahalingam T, Ravi G 2015 J. Mater. Sci. Mater. Electron. 26 7205

    [25]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [26]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [27]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [28]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [29]

    Pires R G, Dickstein R M, Titcomb S L, Anderson R L 1990 Cryogenics 30 1064

    [30]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloy. Compd. 580 538

    [31]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [32]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [33]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99

    [34]

    Kasuya T 1956 Prog. Theor. Phys. 16 45

    [35]

    Yosida K 1956 Phys. Rev. 106 893

    [36]

    Haq B U, Ahmed R, Abdellatif G, Shaari A, Butt F K, Kanoun M B, Said G 2016 Front. Phys. 11 117101

    [37]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, KatayamaY H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [38]

    Dana A S, Kevin R K, Daniel R G 2004 Appl. Phys. Lett. 85 1395

    [39]

    Liu Y, Hou Q Y, Xu H P, Zhao C W, Zhang Y 2012 Chem. Phys. Lett. 551 72

  • [1]

    Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Rabani E, Banin U 2011 Science 332 77

    [2]

    Beaulac R, Schneider L, Archer P I, Bacher G, Gamelin D R 2009 Science 325 973

    [3]

    Risbud A S, Spaldin N A, Chen Z Q, Stemmer S S 2003 Phys. Rev. B 68 205202

    [4]

    Bouloudenine M, Viart N, Colis S, Kortus J D 2005 Appl. Phys. Lett. 87 052501

    [5]

    Thota S, Dutta T, Kumar J 2006 J. Phys. Condens. Matter 18 2473

    [6]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [7]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [8]

    Wang X, Xu J, Zhang B, Yu H, Wang J, Zhang X, Yu J, Li Q 2006 Adv. Mater. 18 2476

    [9]

    Pearton S J, Abernathy C R, Overberg M E, Thaler G T, Norton D P 2003 J. Appl. Phys. 93 1

    [10]

    Azarang M, Shuhaimi A, Yousefi R, Sookhakian M 2014 J. Appl. Phys. 116 084307

    [11]

    Yousefi R, Sheini F J, Cheraghizade M, Gandomani S K, Sa'aedi A, Huang N M, Basirun W J, Azarang M 2015 Mater. Sci. Semicond. Process. 32 152

    [12]

    Khan I, Khan S, Nongjai R, Ahmed H, Khan W 2013 Opt. Mater. 35 1189

    [13]

    Rekha K, Nirmala M, Nair M G, Anukaliani A 2010 Physics B 405 3180

    [14]

    Gerami A M, Zadeh M V 2016 J. Supercond. Nov. Magn. 29 1295

    [15]

    Haq B U, Ahmed R, Abdellatif G, Shaari A, Butt F K, Kanoun M B, Said S G 2016 Front. Phys. 11 117101

    [16]

    Xiao Z L, Shi L B 2011 Acta Phys. Sin. 60 027502 (in Chinese) [肖振林, 史力斌 2011 60 027502]

    [17]

    Guruvammal D, Selvaraj S, Sundar S M 2016 J. Alloy. Compd. 682 850

    [18]

    Vijayaparkavi A P, Senthilkumaar S 2012 J. Supercond. Nov. Magn. 25 427

    [19]

    Jadhav J, Biswas S 2016 J. Alloy. Compd. 664 71

    [20]

    Pal B, Sarkar D, Giri P K 2015 Appl. Surf. Sci. 356 804

    [21]

    Wahab M S A, Jilani A, Yahia I S, Ghamdi A A A 2016 Superlattice. Microst. 94 108

    [22]

    Wang S, Li P, Liu H, Li J B, Wei Y 2010 J. Alloy. Compd. 505 362

    [23]

    Ma X G, Wu Y, Lv Y, Zhu Y F 2013 Phys. Chem. C 117 26029

    [24]

    Vijayaprasath G, Muruganrn R, Mahalingam T, Ravi G 2015 J. Mater. Sci. Mater. Electron. 26 7205

    [25]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [26]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [27]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [28]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [29]

    Pires R G, Dickstein R M, Titcomb S L, Anderson R L 1990 Cryogenics 30 1064

    [30]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloy. Compd. 580 538

    [31]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [32]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [33]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99

    [34]

    Kasuya T 1956 Prog. Theor. Phys. 16 45

    [35]

    Yosida K 1956 Phys. Rev. 106 893

    [36]

    Haq B U, Ahmed R, Abdellatif G, Shaari A, Butt F K, Kanoun M B, Said G 2016 Front. Phys. 11 117101

    [37]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, KatayamaY H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [38]

    Dana A S, Kevin R K, Daniel R G 2004 Appl. Phys. Lett. 85 1395

    [39]

    Liu Y, Hou Q Y, Xu H P, Zhao C W, Zhang Y 2012 Chem. Phys. Lett. 551 72

  • [1] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响.  , 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质.  , 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [5] 徐大庆, 李培咸, 娄永乐, 岳改丽, 张超, 张岩, 刘宁庄, 杨波. 空位缺陷及Mg替位对纤锌矿(Ga,Mn)N电子结构和磁光性能的影响.  , 2016, 65(19): 197501. doi: 10.7498/aps.65.197501
    [6] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究.  , 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [7] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [9] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [10] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究.  , 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [12] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO.  , 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [13] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究.  , 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [14] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [15] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [16] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究.  , 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [17] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究.  , 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  5327
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-12
  • 修回日期:  2017-03-02
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map