Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influences of nonspherical aerosol particles and relative humidity of atmosphere on the performance of free space quantum communication

Nie Min Ren Jia-Ming Yang Guang Zhang Mei-Ling Pei Chang-Xing

Citation:

Influences of nonspherical aerosol particles and relative humidity of atmosphere on the performance of free space quantum communication

Nie Min, Ren Jia-Ming, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • When the optical signal is transmitted in the free space, it inevitably passes through the atmosphere. The atmospheric aerosol is one of the most important components of the atmosphere, which not only affects the regional climate, but also influences the transmission of the free space optical signal. However, the study on the relationship between the non-spherical aerosols and the parameters of the free space quantum communication channel has not been carried out so far. To investigate this relationship, the spectral distribution function of the aerosol and its extinction factor should be analyzed first. According to three nonspherical aerosol particles: cylindrical particles, ellipsoidal particles and Chebyshev particles, the equation between channel attenuation of the free space quantum communication and the degree of quantum entanglement can then be established. After that, the effects of the relative humidity of the atmosphere on the degree of quantum entanglement and the fidelity of quantum communication can be analyzed and simulated finally. The simulation results show that the channel attenuations of the free space quantum communication are sequenced in ascending order as cylindrical particles, ellipsoidal particles, and Chebyshev particles, and their influences on the degree of quantum entanglement have different changing trends. When the transmission time is fixed, with the increase of aspect ratio of ellipsoidal particles, the degree of quantum entanglement shows a growing trend, with the increase of aspect ratio of cylindrical particles, the degree of quantum entanglement shows descending trend. With the increase of Chebyshev particle equivalent radius, the degree of quantum entanglement also shows the descending trend. When the relative humidity of the atmosphere is 0.2(0.9), the degree of quantum entanglement and the fidelity of quantum communication will be 0.72(0.75) and 0.32(0.22), respectively. It can be seen that the nonspherical aerosol particles and the relative humidity of the atmosphere each have a significant effect on the function of the free space quantum communication system. Therefore, in a practical free space quantum communication system, the shape factor of nonspherical aerosol particle, orientating factor, equivalent radius and the relative humidity of the atmosphere cannot be ignored, in order to improve the effectiveness and reliability of the free space quantum communication, the different parameters of the communication system should be adjusted adaptively.
      Corresponding author: Ren Jia-Ming, 1572797924@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318) and the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013).
    [1]

    Aden A L, Kerker M 1951 Appl. Phys. 22 1242

    [2]

    Xu L, Pan X B, Shi G Y, Yan B T X, Ao Y J Y, Yuan G Y L, Gong Z B, Zhou J 1998 J. Acta Meteorol. Sin. 56 551 (in Chinese) [许黎, 攀小标, 石广玉, 岩坂泰信, 奥原靖彦, 原圭一郎, 龚知本, 周军1998气象学报56 551]

    [3]

    Hudson P K, Gibson E R, Yong M A 1997 J. Geophys. Res. 113 D01201

    [4]

    Hoyningen-Huene W, Posse P 1997 J. Quant. Spectr. Rad. Trans. 57 651

    [5]

    Waterman P C 1999 J. Opt. Soc. Am. A 16 2968

    [6]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [7]

    Yee K 1996 IEEE Trans. Antenn. Prop. 14 302

    [8]

    Xu Y, Gustafson B S 2001 J. Quant. Spectr. Rad. Trans. 70 395

    [9]

    Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M, Zhang Y, Han D 2012 Acta Phys. Sin. 61 204202 (in Chinese) [范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩东2012 61 204202]

    [10]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸2014 63 240303]

    [11]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸2015 64 150301]

    [12]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [阎毅, 裴昌幸, 韩宝彬, 赵楠2008电波科学学报23 834]

    [13]

    Tao J H, Wang Z F, Xu Q, Li L J, Fan M, Tao M H, Su L, Chen L F 2015 J. Remot. Sens. 19 12 (in Chinese) [陶金花, 王子峰, 徐谦, 李令军, 范萌, 陶明辉, 苏林, 陈良富2015遥感学报19 12]

    [14]

    Lanzagorta M (translated by Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing: Publishing House Of Electronics Industry) pp15-17(in Chinese) [兰萨戈尔塔M著(周万幸, 吴鸣亚, 胡明春, 金林译) 2013量子雷达(北京: 电子工业出版社)第15–17页]

    [15]

    Shao C C, Ma J J 2010 J. At. Mol. Phys. 27 475 (in Chinese) [邵长城, 麻金继2010原子与分子 27 475]

    [16]

    Kaegi R 2004 J. Aerosol Sci. 35 621

    [17]

    Cai J, Gao J, Fan Z G, Fen S, Fang J 2013 Chin. J. Lumin. 34 639 (in Chinese) [蔡嘉, 高隽, 范之国, 冯屾, 方静2013发光学报34 639]

    [18]

    Ren J, Nie M, Yang G, Pei C X 2015 Acta Phot. Sin. 44 1227003 (in Chinese) [任杰, 聂敏, 杨光, 裴昌幸2015光子学报44 1227003]

    [19]

    Middleton W E K 1954 Phys. Today 7 254

    [20]

    Wang J, Niu S J, Yu X N 2013 Chin. Environ. Sci. 33 201 (in Chinese) [王静, 牛生杰, 于兴娜2013中国环境科学33 201]

    [21]

    Gong C W, Li X B, Li J Y, Cao Y N, Zhu W Y, Xu Q S, Wei H L 2014 Acta Opt. Sin. 34 16 (in Chinese) [宫纯文, 李学彬, 李建玉, 曹亚楠, 朱文越, 徐青山, 魏合理2014光学学报34 16]

    [22]

    Bu Y C, Zhao Y K, Chen Z Y, Zhang P, Huang H J 2015 Chin. J. Laser 42 288 (in Chinese) [卜一川, 赵永凯, 陈正岩, 张佩, 黄惠杰2015中国激光42 288]

    [23]

    Chen Y R, Li Q, Liu T J, Feng F Q 2011 Optoe. Eng. 38 42 (in Chinese) [陈玉茹, 李晴, 刘庭杰, 冯富强2011光电工程38 42]

  • [1]

    Aden A L, Kerker M 1951 Appl. Phys. 22 1242

    [2]

    Xu L, Pan X B, Shi G Y, Yan B T X, Ao Y J Y, Yuan G Y L, Gong Z B, Zhou J 1998 J. Acta Meteorol. Sin. 56 551 (in Chinese) [许黎, 攀小标, 石广玉, 岩坂泰信, 奥原靖彦, 原圭一郎, 龚知本, 周军1998气象学报56 551]

    [3]

    Hudson P K, Gibson E R, Yong M A 1997 J. Geophys. Res. 113 D01201

    [4]

    Hoyningen-Huene W, Posse P 1997 J. Quant. Spectr. Rad. Trans. 57 651

    [5]

    Waterman P C 1999 J. Opt. Soc. Am. A 16 2968

    [6]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [7]

    Yee K 1996 IEEE Trans. Antenn. Prop. 14 302

    [8]

    Xu Y, Gustafson B S 2001 J. Quant. Spectr. Rad. Trans. 70 395

    [9]

    Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M, Zhang Y, Han D 2012 Acta Phys. Sin. 61 204202 (in Chinese) [范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩东2012 61 204202]

    [10]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸2014 63 240303]

    [11]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸2015 64 150301]

    [12]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [阎毅, 裴昌幸, 韩宝彬, 赵楠2008电波科学学报23 834]

    [13]

    Tao J H, Wang Z F, Xu Q, Li L J, Fan M, Tao M H, Su L, Chen L F 2015 J. Remot. Sens. 19 12 (in Chinese) [陶金花, 王子峰, 徐谦, 李令军, 范萌, 陶明辉, 苏林, 陈良富2015遥感学报19 12]

    [14]

    Lanzagorta M (translated by Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing: Publishing House Of Electronics Industry) pp15-17(in Chinese) [兰萨戈尔塔M著(周万幸, 吴鸣亚, 胡明春, 金林译) 2013量子雷达(北京: 电子工业出版社)第15–17页]

    [15]

    Shao C C, Ma J J 2010 J. At. Mol. Phys. 27 475 (in Chinese) [邵长城, 麻金继2010原子与分子 27 475]

    [16]

    Kaegi R 2004 J. Aerosol Sci. 35 621

    [17]

    Cai J, Gao J, Fan Z G, Fen S, Fang J 2013 Chin. J. Lumin. 34 639 (in Chinese) [蔡嘉, 高隽, 范之国, 冯屾, 方静2013发光学报34 639]

    [18]

    Ren J, Nie M, Yang G, Pei C X 2015 Acta Phot. Sin. 44 1227003 (in Chinese) [任杰, 聂敏, 杨光, 裴昌幸2015光子学报44 1227003]

    [19]

    Middleton W E K 1954 Phys. Today 7 254

    [20]

    Wang J, Niu S J, Yu X N 2013 Chin. Environ. Sci. 33 201 (in Chinese) [王静, 牛生杰, 于兴娜2013中国环境科学33 201]

    [21]

    Gong C W, Li X B, Li J Y, Cao Y N, Zhu W Y, Xu Q S, Wei H L 2014 Acta Opt. Sin. 34 16 (in Chinese) [宫纯文, 李学彬, 李建玉, 曹亚楠, 朱文越, 徐青山, 魏合理2014光学学报34 16]

    [22]

    Bu Y C, Zhao Y K, Chen Z Y, Zhang P, Huang H J 2015 Chin. J. Laser 42 288 (in Chinese) [卜一川, 赵永凯, 陈正岩, 张佩, 黄惠杰2015中国激光42 288]

    [23]

    Chen Y R, Li Q, Liu T J, Feng F Q 2011 Optoe. Eng. 38 42 (in Chinese) [陈玉茹, 李晴, 刘庭杰, 冯富强2011光电工程38 42]

  • [1] Yang Rui-Ke, Li Fu-Jun, Wu Fu-Ping, Lu Fang, Wei Bing, Zhou Ye. Influence of sand and dust turbulent atmosphere on performance of free space quantum communication. Acta Physica Sinica, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [2] Nie Min, Wang Chao-Xu, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. Influence of snowfall on free-space quantum channel near earth surface and parameter simulation. Acta Physica Sinica, 2021, 70(3): 030301. doi: 10.7498/aps.70.20200972
    [3] Tao Zhi-Wei, Ren Yi-Chong, Abdukirim Azezigul, Liu Shi-Wei, Rao Rui-Zhong. Quantum illumination radar with entangled coherent states. Acta Physica Sinica, 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [4] Wei Rong-Yu, Nie Min, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. Parameters adaptive adjustment strategy of quantum communication channel in free-space based on software-defined quantum communication. Acta Physica Sinica, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [5] Nie Min, Wei Rong-Yu, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. An adaptive quantum state-hopping communication strategy based on kangaroo entanglement hopping model. Acta Physica Sinica, 2019, 68(11): 110301. doi: 10.7498/aps.68.20190163
    [6] Ren Bao-Cang, Deng Fu-Guo. Hyper-parallel photonic quantum computation and manipulation on hyperentangled states. Acta Physica Sinica, 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [7] Zhang Xue-Hai, Wei He-Li, Dai Cong-Ming, Cao Ya-Nan, Li Xue-Bin. Influence of aspect ratio on the light scattering properties of spherical aerosol particles. Acta Physica Sinica, 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [8] Nie Min, Ren Jie, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of PM2.5 atmospheric pollution on the performance of free space quantum communication. Acta Physica Sinica, 2015, 64(15): 150301. doi: 10.7498/aps.64.150301
    [9] Fan Meng, Chen Liang-Fu, Li Shen-Shen, Tao Jin-Hua, Su Lin, Zou Ming-Min, Zhang Ying, Han Dong. Scattering properties of non-spherical particles in the CO2 shortwave infrared band. Acta Physica Sinica, 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [10] Li Tie, Chen Juan, Ke Xi-Zheng. Study of orbital angular momentum entangled photons entanglement in atmospheric channel. Acta Physica Sinica, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [11] Cao Hui, Zhao Qing. Correlated tunneling of cold atoms in double-well potential. Acta Physica Sinica, 2010, 59(4): 2187-2192. doi: 10.7498/aps.59.2187
    [12] Zhang Guo-Feng, Bu Jing-Jing. Entanglement evolution between atoms in the non-degenerate two photons Tavis-Cummings model in resonance and non-resonance cases. Acta Physica Sinica, 2010, 59(3): 1462-1467. doi: 10.7498/aps.59.1462
    [13] Guo Liang, Liang Xian-Ting. Entanglement evolution of field-atom and atom-atom in Tavis-Cummings model. Acta Physica Sinica, 2009, 58(1): 50-54. doi: 10.7498/aps.58.50
    [14] Wang Jin-Dong, Lu Wei, Zhao Feng, Liu Xiao-Bao, Guo Bang-Hong, Zhang Jing, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao. The experimental research on a stable free-space quantum key distribution system with low noise. Acta Physica Sinica, 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
    [15] Wang Shao-Kai, Ren Ji-Gang, Jin Xian-Min, Yang Bin, Yang Dong, Peng Cheng-Zhi, Jiang Shuo, Wang Xiang-Bin. The design of entangled source for free space quantum communications. Acta Physica Sinica, 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [16] Si Fu-Qi, Liu Jian-Guo, Xie Pin-Hua, Zhang Yu-Jun, Dou Ke, Liu Wen-Qing. Determination of size distribution of atmospheric aerosol by DOAS. Acta Physica Sinica, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [17] Jiang Chun-Lei, Fang Mao-Fa, Wu Zhen-Zhen. The entanglement dynamics of two entangled atoms in the dissipative cavity. Acta Physica Sinica, 2006, 55(9): 4647-4651. doi: 10.7498/aps.55.4647
    [18] Miao Er-Long, Mo Xiao-Fan, Gui You-Zhen, Han Zheng-Fu, Guo Guang-Can. Phase-modulated free space quantum key distribution. Acta Physica Sinica, 2004, 53(7): 2123-2126. doi: 10.7498/aps.53.2123
    [19] Zhang Guo-Feng, Jia Xin-Juan, Yan Qi-Wei, Liang Jiu-Qing. Influence of entanglement degree on squeezing and photon antibunching in the tw o-photon Jaynes-Cummings model. Acta Physica Sinica, 2003, 52(10): 2393-2398. doi: 10.7498/aps.52.2393
    [20] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI. ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
Metrics
  • Abstract views:  6413
  • PDF Downloads:  462
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2016
  • Accepted Date:  20 May 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map