-
Based on the T-matrix method and the generalized multiparticle Mie-solution (GMM) method combined with diffusion-limited aggregation simulator, the scattering properties of non-spherical particles and aggregates are simulated at 1.6 μm and 2.0 μm. And the effects of the equal-volume sphere radius, the complex refractive index, the particle shape and the relative humidity (RH) on the scattering characteristics parameters of non-spherical aerosol are analyzed. The results show that besides the equal-volume sphere radius and the particle shape, the RH could also lead to a large change of the scattering properties. And the relative differences in back scattering between spherical particles and non-spherical particles in different relative humidities are all larger than 18%. If the RH increases, the back scattering will increase for small-size particles, while the back scattering of large-size ones will decrease. The asymmetry factors of the smaller aggregates are 0.023 averagely greater than those of the single equal-volume non-spherical particles, which the asymmetry factors of the bigger aggregates are 0.055 averagely less than those of the single equal-volume non-spherical particles. The differences in single scattering albedo between the two wavelengths 1.6 μm and 2.0 μm are all much larger for either aggregates or single equal-volume particles, and the biggest difference reaches 0.226. This research has scientific significance for studying the aerosol multiple scattering influencing on the accuracy of CO2 satellite retrieval.
-
Keywords:
- non-spherical particles /
- scattering properties /
- T-matrix method /
- generalized multi-sphere Mie-solution method
[1] Crevoisier C, Chédin A, Matsueda H, Machida T, Armante1 R, Scott N A 2009 Atmos. Chem. Phys. 9 4797
[2] Buchwitz M, Beek R, Burrows J P, Bovensmann H, Warneke T, Notholt J, Meirink J F, Goede A P H, Bergamaschi P, Körner S, Heimann M, Schulz A 2005 Atmos. Chem. Phys. 5 941
[3] Aben I, Hasekamp O, Hartmann W 2007 J. Quant. Spectrosc. Radiat. Transfer. 104 450
[4] Mayer B 2009 Eur. Phys. J. Conf. 1 75
[5] Boesch H, Baker D, Connor B, Crisp D 2011 Remote Sens. 3 270
[6] Natraj V, Boesch H, Spurr R J D, Yung Y L 2008 J. Geophys. Res. 113 D11212
[7] Xie Q Y, Zhang Y M, Yuan H Y, Zhao J H, Qiao L F, Jiang Y L 2006 J. Univ. Sci. Technol. China 36 320 (in Chinese) [谢启源, 张永明, 袁宏永, 赵建华, 乔利锋, 蒋亚龙 2006 中国科学技术大学学报 36 320]
[8] Tanré D, Deschamps P Y, Devaux C, Herman M 1998 J. Geophys. Res. 93 15955
[9] Waterman P C 1999 J. Opt. Soc. Am. A 16 2968
[10] Mishchenko M I, Travis L D, Mackowski D W 1996 J. Quant. Spectrosc. Radiat. Transfer 55 535
[11] Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
[12] Yee K 1966 IEEE Trans. Antenn. Prop. 14 302
[13] Xu Y, Gustafson B S 2001 J. Quant. Spectrosc. Radiat. Transfer. 70 395
[14] Witten T, Sander L 1983 Phys. Rev. B 27 5686
[15] Mishchenko M I, Travis L D 1998 J. Quant. Spectrosc. Radiat. Transfer. 60 309
[16] Mishchenko M I, Travis L D, Mackowski D W 2010 J. Quant. Spectrosc. Radiat. Transfer. 111 1700
[17] Mishchenko M I, Travis L D 1994 Opt. Commun. 109 16
[18] Mishchenko M I 1991 J. Opt. Soc. Am. A 8 871
[19] Mishchenko M I 1993 Appl. Opt. 32 4652
[20] Hess M, Koepke P, Schult I 1998 Bull. Am. Met. Soc. 79 831
[21] Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S.N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Šimečková M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J 2009 J. Quant. Spectrosc. Radiat. Transfer. 110 533
-
[1] Crevoisier C, Chédin A, Matsueda H, Machida T, Armante1 R, Scott N A 2009 Atmos. Chem. Phys. 9 4797
[2] Buchwitz M, Beek R, Burrows J P, Bovensmann H, Warneke T, Notholt J, Meirink J F, Goede A P H, Bergamaschi P, Körner S, Heimann M, Schulz A 2005 Atmos. Chem. Phys. 5 941
[3] Aben I, Hasekamp O, Hartmann W 2007 J. Quant. Spectrosc. Radiat. Transfer. 104 450
[4] Mayer B 2009 Eur. Phys. J. Conf. 1 75
[5] Boesch H, Baker D, Connor B, Crisp D 2011 Remote Sens. 3 270
[6] Natraj V, Boesch H, Spurr R J D, Yung Y L 2008 J. Geophys. Res. 113 D11212
[7] Xie Q Y, Zhang Y M, Yuan H Y, Zhao J H, Qiao L F, Jiang Y L 2006 J. Univ. Sci. Technol. China 36 320 (in Chinese) [谢启源, 张永明, 袁宏永, 赵建华, 乔利锋, 蒋亚龙 2006 中国科学技术大学学报 36 320]
[8] Tanré D, Deschamps P Y, Devaux C, Herman M 1998 J. Geophys. Res. 93 15955
[9] Waterman P C 1999 J. Opt. Soc. Am. A 16 2968
[10] Mishchenko M I, Travis L D, Mackowski D W 1996 J. Quant. Spectrosc. Radiat. Transfer 55 535
[11] Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
[12] Yee K 1966 IEEE Trans. Antenn. Prop. 14 302
[13] Xu Y, Gustafson B S 2001 J. Quant. Spectrosc. Radiat. Transfer. 70 395
[14] Witten T, Sander L 1983 Phys. Rev. B 27 5686
[15] Mishchenko M I, Travis L D 1998 J. Quant. Spectrosc. Radiat. Transfer. 60 309
[16] Mishchenko M I, Travis L D, Mackowski D W 2010 J. Quant. Spectrosc. Radiat. Transfer. 111 1700
[17] Mishchenko M I, Travis L D 1994 Opt. Commun. 109 16
[18] Mishchenko M I 1991 J. Opt. Soc. Am. A 8 871
[19] Mishchenko M I 1993 Appl. Opt. 32 4652
[20] Hess M, Koepke P, Schult I 1998 Bull. Am. Met. Soc. 79 831
[21] Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S.N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Šimečková M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J 2009 J. Quant. Spectrosc. Radiat. Transfer. 110 533
Catalog
Metrics
- Abstract views: 7896
- PDF Downloads: 686
- Cited By: 0