搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于袋鼠纠缠跳跃模型的量子状态自适应跳变通信策略

聂敏 卫容宇 杨光 张美玲 孙爱晶 裴昌幸

引用本文:
Citation:

基于袋鼠纠缠跳跃模型的量子状态自适应跳变通信策略

聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸

An adaptive quantum state-hopping communication strategy based on kangaroo entanglement hopping model

Nie Min, Wei Rong-Yu, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing
PDF
HTML
导出引用
  • 自由空间中的量子通信会不同程度上受到雾霾、沙尘等自然环境的干扰. 为了研究提升此类干扰下量子通信的性能, 本文分析了背景干扰下单量子态信道随时间演化的性能变化, 并根据袋鼠纠缠跳跃模型(KEHM), 提出了基于KEHM的量子状态自适应跳变通信策略, 对其性能参数进行仿真. 仿真结果表明, 采取量子状态跳变, 在背景量子噪声的平均功率与量子信号平均功率的比值为5的情况下, 量子误比特率随着量子态跳频率从1增大到15, 由0.4524降低到0.1116; 当单量子态传输成功率0.95, 量子比特率大于200 qubit/s时, 不同态跳频率下量子比特的成功传输概率均大于0.97. 当发送端信号源平均量子数足够大且接收端接收效率趋近于1时, 量子态的通过率也趋近于1; 采取量子态跳自适应控制策略, 能够进一步降低系统的误码率.
    Quantum communication in free space will be disturbed by natural environment such as fog and dust. However, to build a global quantum satellite wide area communication network, we must solve the problem of 24-h all-weather communication between satellite and earth. With the evolution of time, the degree of interference becomes deeper. In order to improve the performance of quantum communication under such an interference, in this paper we analyze the change of single quantum state channel over time under the background interference, and propose an quantum state-hopping communication strategy based on the kangaroo entanglement hopping model (KEHM), and simulate the performance and parameters of the strategy. Kangaroos are social animals. When they are frightened, they will jump synchronously in the same way with the same step length, height and frequency. According to this model, we make the two communicating parties realize synchronous quantum state jump according to the prearranged pattern. The simulations show that when the ratio between the average power of background quantum noise and the average power of quantum signal is 5, the quantum bit error rate decreases from 0.4524 to 0.1116 with the quantum state hopping frequency increasing from 1 to 15. When the single quantum state transmission success rate is 0.95 and the quantum bit rate is greater than 200 qubit/s, the probabilities of successful transmission of quantum bits at different state hopping frequencies are greater than 0.97. When the quantum reception efficiency of the receiver is 0.8, the quantum state pass rate increases from 0.3667 to 0.9986 with the average quantum number of the source increasing from 1 to 10. When the average quantum number of the source is 6, the passing rate of quantum state increases from 0.6262 to 0.9855 with the quantum receiving efficiency of the receiver increasing from 0.2 to 0.99. However, if the average quantum number of the transmitter is large enough and the receiving efficiency of the receiver is close to 1, the passing rate of the quantum state is also close to 1. The adaptive control strategy of quantum state hopping is based on real-time quantum channel state detection. Its core idea is to remove the quantum states which are seriously disturbed from the quantum state hopping set, and to realize the synchronous hopping of communication parties on the quantum states with low interference. Adopting the strategy of quantum state hopping adaptive control can further reduce the quantum bit error rate of the system. The error rate gain of adaptive control system increases with the increase of the success probability of processing the disturbed quantum state. When the probability of processing the disturbed quantum state is 0.95, the system error rate gain can reach 1.301. The performance of quantum state hopping system is improved obviously. To sum up, the adaptive quantum state-hopping communication strategy based on the kangaroo entanglement hopping model proposed in this paper greatly enhances the comprehensive immunity of the system and ensures the security of quantum information network, and provides an important reference for the healthy development of wide-area quantum satellite communication network in the future.
      通信作者: 卫容宇, 353504371@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61172071)、陕西省国际科技合作与交流计划(批准号: 2015KW-013)和陕西省教育厅科研计划(批准号: 16JK1711)资助的课题.
      Corresponding author: Wei Rong-Yu, 353504371@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61172071 ), the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711).
    [1]

    Jin X M, Ren J G, Yang B 2010 Nat. Photonics 4 376Google Scholar

    [2]

    Alessandro F, Rupert U, Thomas H, Matteo N, Robert P, Thomas S, Felix T, Thomas J, Anton Z 2009 Nat. Phys. 5 389Google Scholar

    [3]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William Nr, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269Google Scholar

    [4]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nat. Photonics 7 387Google Scholar

    [5]

    Wang X L, Cai X D, Su Z E 2015 Nature 518 516Google Scholar

    [6]

    Davide E B, Timothy C, Ralph, Ivette F, Thomas J, Mohsen R 2014 Phys. Rev. D 90 045041Google Scholar

    [7]

    Liao S K, Yong H L, Liu C, Shentu G L, Li D D, Lin J, Dai H, Zhao S Q, Li B, Guan J Y, Chen W, Gong Y H, Li Y, Lin Z H, Pan G S, Pelc S J, Fejer M M, Zhang W Z, Liu W Y, Yin J, Ren J G, Wang X B, Zhang Q, Peng C Z, Pan J W 2017 Nat. Photonics 11 509Google Scholar

    [8]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [9]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [10]

    Ivan C, Andrea T, Alberto D, Francesca G, Ruper U, Giuseppe V, Paolo V 2012 Phys. Rev. Lett. 109 200502Google Scholar

    [11]

    聂敏, 常乐, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 0701002

    Nie M, Chang L, Yang G, Zhang M L, Pei C X 2017 Acta Photon. Sin. 46 0701002

    [12]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 光子学报 45 0927004

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0927004

    [13]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 66 070302Google Scholar

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302Google Scholar

    [14]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 1206002

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Photon. Sin. 46 1206002

    [15]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 65 190301Google Scholar

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 190301Google Scholar

    [16]

    聂敏, 石力, 杨光, 裴昌幸 2017 通信学报 38 2017092

    Nie M, Shi L, Yang G, Pei C X 2017 J. Communs. 38 2017092

    [17]

    张永德 2010 量子力学 (北京: 科学出版社) 第343页

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese)

    [18]

    张永德 2010 高等量子力学 (北京: 科学出版社) 第24页

    Zhang Y D 2010 Advanced Quantum Mechanics (Beijing: Science Press) p24 (in Chinese)

    [19]

    马科 L 著 (周万幸, 吴鸣亚, 胡明春, 金林 译) 2013 量子雷达 (北京: 电子工业出版社) 第15—17页

    Marco L (translated bu Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing: Publishing House of Electronics Industry) pp15−17 (in Chinese)

    [20]

    尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第100页

    Yin H, Han Y 2013 Quantum Communication Principle and Technology (Beijing: Publishing House of Electronics Industry) p100 (in Chinese)

  • 图 1  ${K_{\rm{A}}}$的跳跃模式

    Fig. 1.  Skip mode of ${K_{\rm{A}}}$

    图 2  ${K_{\rm{B}}}$的跳跃模式

    Fig. 2.  Skip mode of ${K_{\rm{B}}}$

    图 3  量子误比特率与量子态跳频率及${K_{JS}}$的关系

    Fig. 3.  Relationship between quantum bit error rate, quantum state hopping frequency and ${K_{JS}}$

    图 4  量子比特成功传输概率与量子比特率的关系

    Fig. 4.  Relationship between the probability of successful quantum bit transmission and the quantum bit rate

    图 5  量子态通过率与接收端量子接收效率及信号源平均量子数的关系

    Fig. 5.  Relationship between the quantum state pass rate and the receiver's quantum reception efficiency and the average quantum number of the signal source

    图 6  量子态数目、被严重干扰的概率与平均自适应处理时间的关系

    Fig. 6.  Relationship between the number of quantum states, the probability of serious interference, and the mean adaptive processing time

    图 7  量子态跳自适应控制策略系统增益

    Fig. 7.  Gain of the quantum state hopping adaptive control system

    表 1  不同时刻通信双方量子跳跃状态

    Table 1.  Quantum hopping states of communication parties at different moments

    时刻 $T$ 状态 $\left| \phi \right\rangle $
    0—T1 ${\left| \phi \right\rangle _n}$
    T1T2 ${\left| \phi \right\rangle _{n-2}}$
    T2T3 ${\left| \phi \right\rangle _{n - 1}}$
    T3T4 ${\left| \phi \right\rangle _1}$
    $ \cdots $ $ \cdots $
    Tn–1Tn ${\left| \phi \right\rangle _1}$
    下载: 导出CSV
    Baidu
  • [1]

    Jin X M, Ren J G, Yang B 2010 Nat. Photonics 4 376Google Scholar

    [2]

    Alessandro F, Rupert U, Thomas H, Matteo N, Robert P, Thomas S, Felix T, Thomas J, Anton Z 2009 Nat. Phys. 5 389Google Scholar

    [3]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William Nr, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269Google Scholar

    [4]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nat. Photonics 7 387Google Scholar

    [5]

    Wang X L, Cai X D, Su Z E 2015 Nature 518 516Google Scholar

    [6]

    Davide E B, Timothy C, Ralph, Ivette F, Thomas J, Mohsen R 2014 Phys. Rev. D 90 045041Google Scholar

    [7]

    Liao S K, Yong H L, Liu C, Shentu G L, Li D D, Lin J, Dai H, Zhao S Q, Li B, Guan J Y, Chen W, Gong Y H, Li Y, Lin Z H, Pan G S, Pelc S J, Fejer M M, Zhang W Z, Liu W Y, Yin J, Ren J G, Wang X B, Zhang Q, Peng C Z, Pan J W 2017 Nat. Photonics 11 509Google Scholar

    [8]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [9]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [10]

    Ivan C, Andrea T, Alberto D, Francesca G, Ruper U, Giuseppe V, Paolo V 2012 Phys. Rev. Lett. 109 200502Google Scholar

    [11]

    聂敏, 常乐, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 0701002

    Nie M, Chang L, Yang G, Zhang M L, Pei C X 2017 Acta Photon. Sin. 46 0701002

    [12]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 光子学报 45 0927004

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0927004

    [13]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 66 070302Google Scholar

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302Google Scholar

    [14]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 1206002

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Photon. Sin. 46 1206002

    [15]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 65 190301Google Scholar

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 190301Google Scholar

    [16]

    聂敏, 石力, 杨光, 裴昌幸 2017 通信学报 38 2017092

    Nie M, Shi L, Yang G, Pei C X 2017 J. Communs. 38 2017092

    [17]

    张永德 2010 量子力学 (北京: 科学出版社) 第343页

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese)

    [18]

    张永德 2010 高等量子力学 (北京: 科学出版社) 第24页

    Zhang Y D 2010 Advanced Quantum Mechanics (Beijing: Science Press) p24 (in Chinese)

    [19]

    马科 L 著 (周万幸, 吴鸣亚, 胡明春, 金林 译) 2013 量子雷达 (北京: 电子工业出版社) 第15—17页

    Marco L (translated bu Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing: Publishing House of Electronics Industry) pp15−17 (in Chinese)

    [20]

    尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第100页

    Yin H, Han Y 2013 Quantum Communication Principle and Technology (Beijing: Publishing House of Electronics Industry) p100 (in Chinese)

  • [1] 黄天龙, 吴永政, 倪明, 汪士, 叶永金. 量子噪声对Shor算法的影响.  , 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] 熊凡, 陈永聪, 敖平. 热噪声环境下偶极场驱动的量子比特动力学.  , 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [3] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制.  , 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [4] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究.  , 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [5] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [6] 聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸. 降雪对地表附近自由空间量子信道的影响及参数仿真.  , 2021, 70(3): 030301. doi: 10.7498/aps.70.20200972
    [7] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略.  , 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [8] 聂敏, 任家明, 杨光, 张美玲, 裴昌幸. 非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响.  , 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [9] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议.  , 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [10] 聂敏, 任杰, 杨光, 张美玲, 裴昌幸. PM2.5大气污染对自由空间量子通信性能的影响.  , 2015, 64(15): 150301. doi: 10.7498/aps.64.150301
    [11] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧. 双量子点电荷比特的散粒噪声谱.  , 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [12] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构.  , 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [13] 肖海林, 欧阳缮, 聂在平. MIMO量子信道的空间自由度研究.  , 2009, 58(6): 3685-3691. doi: 10.7498/aps.58.3685
    [14] 崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕 力, 赵士平. 本征约瑟夫森结跳变电流分布的量子修正.  , 2008, 57(9): 5933-5936. doi: 10.7498/aps.57.5933
    [15] 高宽云, 赵翠兰. 量子环中量子比特的性质.  , 2008, 57(7): 4446-4449. doi: 10.7498/aps.57.4446
    [16] 王少凯, 任继刚, 金贤敏, 杨 彬, 杨 冬, 彭承志, 蒋 硕, 王向斌. 自由空间量子通讯实验中纠缠源的研制.  , 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [17] 王金东, 路 巍, 赵 峰, 刘小宝, 郭邦红, 张 静, 黄宇娴, 路轶群, 刘颂豪. 稳定的低噪声自由空间量子密钥分配实验研究.  , 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
    [18] 熊 涛, 常胜江, 申金媛, 张延炘. 用于可变比特率视频通信量预测的自适应训练及删剪算法.  , 2005, 54(4): 1931-1936. doi: 10.7498/aps.54.1931
    [19] 王波波. 环面黑洞背景下量子场的熵.  , 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [20] 苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿. 相位调制自由空间量子密钥分配.  , 2004, 53(7): 2123-2126. doi: 10.7498/aps.53.2123
计量
  • 文章访问数:  6610
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-28
  • 修回日期:  2019-03-22
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回
Baidu
map