Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A simplified method of solving Birkhoffian function and Lagrangian

Cui Jin-Chao Liao Cui-Cui Zhao Zhe Liu Shi-Xing

Citation:

A simplified method of solving Birkhoffian function and Lagrangian

Cui Jin-Chao, Liao Cui-Cui, Zhao Zhe, Liu Shi-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By using the calculus of variations, the conservative mechanical systems can be formulated by Lagrange's equations or Hamilton's equations, which are the basis of establishing, simplifying and integrating the equations of motion. Thus it is important to find the solutions of inverse problems for different dynamical systems so as to construct the most of the Lagrange's equations and Hamilton's equations. However, the Lagrangian or Hamiltonian formulation for a dynamical system, limited by the conditions of self-adjointness, is not directly universal if the physical variables remain without using Darboux transformations. Fortunately, Refs. [7, 11] show that based on the Cauchy-Kovalevsky theorem of the integrability conditions for partial differential equations and the converse of the Poincar lemma, it can be proved that there exists a direct universality of Birkhoff's equation for local Newtonian system by reducing the Newton's equations to a first-order form, which means that all local, analytic, regular, finite-dimensional, unconstrained or holonomic, conservative or non-conservative forms always admit, in a star-shaped neighborhood of a regular point of their variables, a representation in terms of first-order Birkhoff's equations in the coordinate and time variables of the experiment. The systems whose equations of motion are represented by the first-order Birkhoff's equations on a symplectic or a contact manifold spanned by the physical variables are called Birkhoffian systems. At present, one of the most important tasks of Birkhoffian mechanics is to study the method of constructing the Birkhoffian and Birkhoffian functions. However, due to the complexity of Birkhoffian system, there exist only a few of results in the literature. Among them, the most famous main methods in this problem are achieved by Santilli[Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag) pp12-15]. But the redundant term in Santilli's second method which is used as the classical construction method, is always neglected. As a result, the calculation procedure is tedious and complicated, and the efficiency is not high. Therefore, it is necessary to simplify the Santilli's second method. In Section 2, we will review the first-order standard form of holonomic system in the frame of Cartesian coordinates, which is the starting point of our studying the Birkhoffian systems. In Section 3, the Birkhoff's equations and the key role of Birkhoffian dynamics functions for deriving Birkhoff's equations are introduced. In Section 4, the redundant items are eliminated by using some mathematical operation skills, and then a more simplified constructing method is put forward. In Section 5, the findings in this study are summarized. Through simplifying the Santilli's second method, we realize that the determining of the Birkhoff's equations by constructing the Birkhoffian functions is equivalent to the determining of its symplectic matrix. This view provides a new perspective for solving the problem of constructing the Birkhoffian functions. Finally, the simplified method is applied to Lagrangian inverse problem, and a simplified method of solving Lagrangian function is obtained.
      Corresponding author: Liu Shi-Xing, liushixing@lnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472124, 11401259) and the Self-determined Research Program of Jiangnan University, China (Grant No. JUSRP11530).
    [1]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag) pp2-4

    [2]

    Chen B 2012 Analytic Dynamics (2nd Edition) (Beijing: Peking University Press) pp105-108 (in Chinese) [陈滨 2012 分析动力学 (第二版) (北京: 北京大学出版社) 第105-108页]

    [3]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) pp131-132 (in Chinese) [梅凤翔, 刘端, 罗勇 1991 高等分析力学 (北京: 北京理工大学出版社) 第131-132页]

    [4]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag) pp12-15

    [5]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry (2nd Ed.) (New York: Springer-Verlag) pp4-6

    [6]

    Guo Y X, Luo S K, Mei F X 2004 Adv. Mech. 34 477 (in Chinese) [郭永新, 罗绍凯, 梅凤翔 2004 力学进展 34 477]

    [7]

    Aringazin A K 1993 Phys. Lett. B 314 333

    [8]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp1-3 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社) 第1-3页]

    [9]

    Wu H B, Mei F X 2012 Chin. Phys. B 21 339

    [10]

    Guo Y X, Shang M, Luo S K 2003 Appl. Math. Mech. 24 62 (in Chinese) [郭永新, 尚玫, 罗绍凯 2003 应用数学和力学 24 62]

    [11]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [12]

    Luo S K 2003 Appl. Math. Mech. 4 414 (in Chinese) [罗绍凯 2003 应用数学和力学 4 414]

    [13]

    Ionescu D 2007 J. Geom. Phys. 57 2213

    [14]

    Zhang Y 2010 Chin. Phys. B 19 80

    [15]

    Chen C W, Luo S K, Mei F X 2001 Appl. Math. Mech. 1 47 (in Chinese) [陈向炜, 罗绍凯, 梅凤翔 2001 应用数学和力学 1 47]

    [16]

    Liu S X, Guo Y X, Liu C 2008 Acta Phys. Sin. 57 1311 (in Chinese) [刘世兴, 郭永新, 刘畅 2008 57 1311]

    [17]

    Liu C, Song D, Liu S X, Guo Y X 2013 Sci. China: Tech. Sci. 43 541 (in Chinese) [刘畅, 宋端, 刘世兴, 郭永新 2013 中国科学: 物理学 力学 天文学 43 541]

    [18]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comput 225 326

    [19]

    Ding H, Chen L Q, Yang S P 2012 J. Sound Vib. 331 2426

    [20]

    Ding H, Chen L Q 2010 J. Sound Vib. 329 3484

    [21]

    Mei F X 2009 Inverse Problems of Dynamics (Beijing: National Defense Industry Press) pp261-263 (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社) 第261-263页]

    [22]

    Ding G T 2010 Acta Phys. Sin. 59 3643 (in Chinese) [丁光涛 2010 59 3643]

    [23]

    Song D, Liu C, Guo Y X 2013 Appl. Math. Mech. 34 995

    [24]

    Cui J C, Zhao Z, Guo Y X 2013 Acta Phys. Sin. 62 41 (in Chinese) [崔金超, 赵喆, 郭永新 2013 62 41]

  • [1]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag) pp2-4

    [2]

    Chen B 2012 Analytic Dynamics (2nd Edition) (Beijing: Peking University Press) pp105-108 (in Chinese) [陈滨 2012 分析动力学 (第二版) (北京: 北京大学出版社) 第105-108页]

    [3]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) pp131-132 (in Chinese) [梅凤翔, 刘端, 罗勇 1991 高等分析力学 (北京: 北京理工大学出版社) 第131-132页]

    [4]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag) pp12-15

    [5]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry (2nd Ed.) (New York: Springer-Verlag) pp4-6

    [6]

    Guo Y X, Luo S K, Mei F X 2004 Adv. Mech. 34 477 (in Chinese) [郭永新, 罗绍凯, 梅凤翔 2004 力学进展 34 477]

    [7]

    Aringazin A K 1993 Phys. Lett. B 314 333

    [8]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp1-3 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社) 第1-3页]

    [9]

    Wu H B, Mei F X 2012 Chin. Phys. B 21 339

    [10]

    Guo Y X, Shang M, Luo S K 2003 Appl. Math. Mech. 24 62 (in Chinese) [郭永新, 尚玫, 罗绍凯 2003 应用数学和力学 24 62]

    [11]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [12]

    Luo S K 2003 Appl. Math. Mech. 4 414 (in Chinese) [罗绍凯 2003 应用数学和力学 4 414]

    [13]

    Ionescu D 2007 J. Geom. Phys. 57 2213

    [14]

    Zhang Y 2010 Chin. Phys. B 19 80

    [15]

    Chen C W, Luo S K, Mei F X 2001 Appl. Math. Mech. 1 47 (in Chinese) [陈向炜, 罗绍凯, 梅凤翔 2001 应用数学和力学 1 47]

    [16]

    Liu S X, Guo Y X, Liu C 2008 Acta Phys. Sin. 57 1311 (in Chinese) [刘世兴, 郭永新, 刘畅 2008 57 1311]

    [17]

    Liu C, Song D, Liu S X, Guo Y X 2013 Sci. China: Tech. Sci. 43 541 (in Chinese) [刘畅, 宋端, 刘世兴, 郭永新 2013 中国科学: 物理学 力学 天文学 43 541]

    [18]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comput 225 326

    [19]

    Ding H, Chen L Q, Yang S P 2012 J. Sound Vib. 331 2426

    [20]

    Ding H, Chen L Q 2010 J. Sound Vib. 329 3484

    [21]

    Mei F X 2009 Inverse Problems of Dynamics (Beijing: National Defense Industry Press) pp261-263 (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社) 第261-263页]

    [22]

    Ding G T 2010 Acta Phys. Sin. 59 3643 (in Chinese) [丁光涛 2010 59 3643]

    [23]

    Song D, Liu C, Guo Y X 2013 Appl. Math. Mech. 34 995

    [24]

    Cui J C, Zhao Z, Guo Y X 2013 Acta Phys. Sin. 62 41 (in Chinese) [崔金超, 赵喆, 郭永新 2013 62 41]

  • [1] Cui Jin-Chao, Chen Man, Liao Cui-Cui. On Santilli's methods in Birkhoffian inverse problem. Acta Physica Sinica, 2018, 67(5): 050202. doi: 10.7498/aps.67.20172091
    [2] Cui Jin-Chao, Liao Cui-Cui, Liu Shi-Xing, Mei Feng-Xiang. A method of judging a Birkhoffian to be a first integral of constrained mechanical system. Acta Physica Sinica, 2017, 66(4): 040201. doi: 10.7498/aps.66.040201
    [3] Chen Ju, Zhang Yi. Perturbation to Noether symmetries and adiabatic invariants for Birkhoffian systems based on El-Nabulsi dynamical models. Acta Physica Sinica, 2014, 63(10): 104501. doi: 10.7498/aps.63.104501
    [4] Song Duan. Simplification of Santillis second method of constructing Birkhoffian functions. Acta Physica Sinica, 2014, 63(14): 144501. doi: 10.7498/aps.63.144501
    [5] Cui Jin-Chao, Zhao Zhe, Guo Yong-Xin. General Hojman's method for the construction of Birkhoffian representation. Acta Physica Sinica, 2013, 62(9): 090205. doi: 10.7498/aps.62.090205
    [6] Ding Guang-Tao. A new approach to the construction of Lagrangians and Hamiltonians for one-dimensional dissipative systems with variable coefficients. Acta Physica Sinica, 2011, 60(4): 044503. doi: 10.7498/aps.60.044503
    [7] Ding Guang-Tao. Hojman method for construction of Birkhoffian representation and the Birkhoff symmetry. Acta Physica Sinica, 2010, 59(6): 3643-3647. doi: 10.7498/aps.59.3643
    [8] Ding Guang-Tao. Effects of gauge transformations on symmetries of Birkhoffian system. Acta Physica Sinica, 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [9] Zhang Yi. Parametric equations and its first integrals for Birkhoffian systems in the event space. Acta Physica Sinica, 2008, 57(5): 2649-2653. doi: 10.7498/aps.57.2649
    [10] Zhang Yi. Noether’s theory for Birkhoffian systems in the event space. Acta Physica Sinica, 2008, 57(5): 2643-2648. doi: 10.7498/aps.57.2643
    [11] Zhang Yi. Routh method of reduction of Birkhoffian systems. Acta Physica Sinica, 2008, 57(9): 5374-5377. doi: 10.7498/aps.57.5374
    [12] Ge Wei_Kuan, Mei Feng_Xiang. Time-integral theorems for Birkhoff systems. Acta Physica Sinica, 2007, 56(5): 2479-2481. doi: 10.7498/aps.56.2479
    [13] Zhang Peng-Yu, Fang Jian-Hui. Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3813-3816. doi: 10.7498/aps.55.3813
    [14] Zhang Yi. A new type of adiabatic invariants for Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [15] Zheng Shi-Wang, Jia Li-Qun. Local energy integral of Birkhoffian systems. Acta Physica Sinica, 2006, 55(11): 5590-5593. doi: 10.7498/aps.55.5590
    [16] Lou Zhi-Mei. Lagrangian function and conserved quantity of onedimensional relativistic harmonic oscillator containing a quadratic velocity drag force term. Acta Physica Sinica, 2005, 54(4): 1457-1459. doi: 10.7498/aps.54.1457
    [17] Zhang Yi, Fan Cun-Xin, Ge Wei-Kuan. A new type of conserved quantities for Birkhoffian systems*. Acta Physica Sinica, 2004, 53(11): 3644-3647. doi: 10.7498/aps.53.3644
    [18] Zhang Yi. Geometric foundations of Hojman theorem\=for Birkhoffian systems. Acta Physica Sinica, 2004, 53(12): 4026-4028. doi: 10.7498/aps.53.4026
    [19] Fu Jing-Li, Chen Li-Qun, Xue Yun, Luo Shao-Kai. Stability of the equilibrium state in relativistic Birkhoff systems*. Acta Physica Sinica, 2002, 51(12): 2683-2689. doi: 10.7498/aps.51.2683
    [20] FU JING-LI, CHEN LI-QUN, LUO SHAO-KAI, CHEN XIANG-WEI, WANG XIN-MIN. STUDY ON DYNAMICS OF RELATIVISTIC BIRKHOFF SYSTEMS. Acta Physica Sinica, 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
Metrics
  • Abstract views:  5648
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2016
  • Accepted Date:  03 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回
Baidu
map