-
本文采用三维时域有限差分法(FDTD)和Maxwell应力张量法建立了单光镊在焦点附近俘获球形微粒的光阱力模型,采用基于球矢量波函数(VSWF)的五阶高斯光源作为仿真光源,得到了准确的光场传播.讨论了光源的波长、束腰、偏振态和微球的半径、折射率对光阱力的影响,分析了在单光镊俘获微球时,邻近微球对光阱力的影响.特别研究了光源的偏振态对微球所受光阱力的作用效果,仿真结果表明圆偏振光比线偏振光对微球的俘获力更大;被光镊稳定俘获的微球,会受到邻近微球干扰,失去平衡状态,改变光源的偏振态可以改变微球的受力状态.
-
关键词:
- 光镊 /
- 光阱力 /
- 介质微球 /
- 时域有限差分法(FDTD)
In this paper the model of trapping force on microsphere near focus in single optical tweezers is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods. Fifth order Gaussian beam based on spherical vector wave function (VSWF) is adopted as simulation light source; the correct light field transmission is obtained. The influences of the wavelength, waist and polarization of light sources, the radius and refractive index of the microsphere on the optical trapping force are discussed. The influence of nearby microsphere and beam polarization on the trapping force of the trapped microsphere in single optical tweezers is analyzed. The effect of beam polarization working on the trapping force of the trapped microsphere is specially analyzed. As results of simulation, the trapping force acting on the microsphere by the circularly polarized beam is larger than that by the linearly polarized beam. The stability of the trapped microsphere in single optical tweezers will be disturbed by the nearby microsphere and lose its balance. Varying the beam polarization will lead to the change of the trapping force of the trapped microsphere.-
Keywords:
- optical tweezers /
- optical trapping force /
- dielectric microsphere /
- FDTD
[1] Ashkin A 1970 Phys. Rev. Lett. 24 156
[2] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288
[3] Chu S, Bjorkholm J E, Ashkin A, Cable A 1986 Phys. Rev. Lett. 57 314
[4] Chu S 1991 Science 253 861
[5] Horst A, Campbell A, Vugt L K, Vanmaekelbergh D A M, Dogterom M, Blaaderen A 2007 Opt. Exp. 15 11629
[6] Pauzauskie P J, Radenovic A, Trepagnier E, Shroff H, Yang P, Liphardt J 2006 Nature 5 97
[7] Zhang Y L, Zhao Y Q, Zhan Q W, Li Y P 2006 Acta Phys. Sin. 55 1253 (in Chinese) [张艳丽、赵逸琼、詹其文、李永平 2006 55 1253]
[8] Ashkin A 1992 J. Biophys. 61 569
[9] Gussgard R, Lindmo T 1992 J. Opt. Soc. Am. B 9 1922
[10] Harada Y, Asakura T 1996 Opt. Commun. 124 529
[11] White D A 2000 Comput. Phys. Commun. 128 558
[12] Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R, Bishop A I 2001 Comput. Phys. Commun. 142 468
[13] Simpson S H, Hanna S 2006 J. Opt. Soc. Am. A 23 1419
[14] Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R 2003 J. Quant. Spectrosc. Radiat. Transfer 79 1005
[15] Gauthier R C 2005 Opt. Exp. 13 3707
[16] Benito D C, Simpson S H, Hanna S 2008 Opt. Exp. 16 2942
[17] Yan H, Feng G Y, Zhu Q H, Zhang D Y, Zhou S H 2008 Acta Phys. Sin. 57 5506 (in Chinese) [杨 浩、冯国英、朱启华、张大勇、周寿桓 2008 57 5506]
[18] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[19] Taflove A, Hagness S C 2005 Computational electrodynamics: The Finite-Difference Time-Domain Method (Third Edition) (Norwood, MA: Artech House)
[20] Yang R G, Cheng D Z, Liu P C 1991 Electromagnetic Theory (Xian: Xian Jiaotong University Press) p53 (in Chinese) [杨儒贵、陈达章、刘鹏程 1991 电磁理论(西安:西安交通大学出版社)第53页]
[21] Han Y P, Du Y G, Zhang H Y 2006 Acta Phys. Sin. 55 4557(in Chinese) [韩一平、杜云刚、张华永 2006 55 4557 ]
[22] Simpson S H, Hanna S 2007 J. Opt. Soc. Am. A 24 430
-
[1] Ashkin A 1970 Phys. Rev. Lett. 24 156
[2] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288
[3] Chu S, Bjorkholm J E, Ashkin A, Cable A 1986 Phys. Rev. Lett. 57 314
[4] Chu S 1991 Science 253 861
[5] Horst A, Campbell A, Vugt L K, Vanmaekelbergh D A M, Dogterom M, Blaaderen A 2007 Opt. Exp. 15 11629
[6] Pauzauskie P J, Radenovic A, Trepagnier E, Shroff H, Yang P, Liphardt J 2006 Nature 5 97
[7] Zhang Y L, Zhao Y Q, Zhan Q W, Li Y P 2006 Acta Phys. Sin. 55 1253 (in Chinese) [张艳丽、赵逸琼、詹其文、李永平 2006 55 1253]
[8] Ashkin A 1992 J. Biophys. 61 569
[9] Gussgard R, Lindmo T 1992 J. Opt. Soc. Am. B 9 1922
[10] Harada Y, Asakura T 1996 Opt. Commun. 124 529
[11] White D A 2000 Comput. Phys. Commun. 128 558
[12] Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R, Bishop A I 2001 Comput. Phys. Commun. 142 468
[13] Simpson S H, Hanna S 2006 J. Opt. Soc. Am. A 23 1419
[14] Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R 2003 J. Quant. Spectrosc. Radiat. Transfer 79 1005
[15] Gauthier R C 2005 Opt. Exp. 13 3707
[16] Benito D C, Simpson S H, Hanna S 2008 Opt. Exp. 16 2942
[17] Yan H, Feng G Y, Zhu Q H, Zhang D Y, Zhou S H 2008 Acta Phys. Sin. 57 5506 (in Chinese) [杨 浩、冯国英、朱启华、张大勇、周寿桓 2008 57 5506]
[18] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[19] Taflove A, Hagness S C 2005 Computational electrodynamics: The Finite-Difference Time-Domain Method (Third Edition) (Norwood, MA: Artech House)
[20] Yang R G, Cheng D Z, Liu P C 1991 Electromagnetic Theory (Xian: Xian Jiaotong University Press) p53 (in Chinese) [杨儒贵、陈达章、刘鹏程 1991 电磁理论(西安:西安交通大学出版社)第53页]
[21] Han Y P, Du Y G, Zhang H Y 2006 Acta Phys. Sin. 55 4557(in Chinese) [韩一平、杜云刚、张华永 2006 55 4557 ]
[22] Simpson S H, Hanna S 2007 J. Opt. Soc. Am. A 24 430
计量
- 文章访问数: 11259
- PDF下载量: 1507
- 被引次数: 0