搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究

黄雪峰 李盛姬 周东辉 赵冠军 王关晴 徐江荣

引用本文:
Citation:

介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究

黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣

Trap, ignition, and diffusion combustion characteristics of active carbon micro-particles at a meso-scale studied by optical tweezers

Huang Xue-Feng, Li Sheng-Ji, Zhou Dong-Hui, Zhao Guan-Jun, Wang Guan-Qing, Xu Jiang-Rong
PDF
导出引用
  • 为探索介观尺度下固体燃料微粒的燃烧现象,本文提出采用光镊工具对活性炭微粒进行捕捉、悬浮、定位,再通过激光点燃,研究其着火及扩散燃烧特性. 介观尺度燃烧室中,光镊捕捉7.0 m活性炭微粒的最低捕捉功率为3.2 mW,捕捉速率范围为103.770.0 m/s;活性炭微粒在静止气流中的最低点火功率为3.2 mW,颗粒的等效粒径、周长、面积和圆形度对最低点火功率影响甚微,点火延迟时间约48 ms,提高点火功率,点火延迟时间缩短,最小点火延迟时间小于6 ms;活性炭在着火后先发生无焰燃烧,紧接着发生有焰燃烧,无焰燃烧的扩散燃烧速率满足粒径平方直线规律,其燃烧速率范围为15.08.0 m/s;有焰燃烧的火焰面积和强度随燃烧时间发生闪烁,其闪烁频率约29.1 Hz. 对于粒径为3.0 m的活性炭微粒,从加热到完全燃烧殆尽所需时间约0.648 s. 结果表明:对于聚焦后的高能激光束点燃活性炭微粒的着火属于联合着火模式,在挥发份析出之前,活性炭非均相着火而发生无焰燃烧,挥发份析出后被点燃发生均相着火,火焰面始终保持圆形.
    To study combustion characteristics of solid fuels at the meso-scale, this paper presents a study on trap, ignition, and diffusion combustion characteristics of active carbon micro-particles at a meso-scale by optical tweezers. In the meso-scale combustor, minimum trap power for active carbon micro-particles with a diameter of 7.0 m is 3.2 mW, and the trap velocity is in the range of 103.770.0 m/s. The active carbon micro-particles in static air flow can be ignited when the laser power is 3.2 mW. The effective diameter, perimeter, area and roundness of the particles have little effect on the minimum power for ignition. The ignition delay time is ~ 48 ms for active carbon micro-particles with a diameter of 3.0 m, and it will decrease till below 6 ms with increasing laser power. After ignited, the active carbon micro-particle shows flameless combustion first. The diffusion combustion velocity agrees with the diameter square linear-relationship, and the velocity is of 15.08.0 m/s. Then the active carbon micro-particle continues to carry out combustion reactions with bright flames repetitiously, and the flash frequency is 29.1 Hz. For the active carbon micro-particle with a diameter of 3.0 m, it can burn out thoroughly in an overall time ~ 0.648 s (including the heating and combustion processes). Results demonstrate that ignition of the active carbon micro-particle heated by high power density laser belongs to the combined ignition mode. Before volatile matter precipitates, the active carbon micro-particle is ignited heterogeneously and carries out a flameless combustion. However, after the volatile components are precipitated, it is ignited homogeneously, and the ombustion flame always shows a spheried shape.
    • 基金项目: 国家自然科学基金(批准号:51276053,51006029)、浙江省自然科学基金 (资助号:LY14E060002)和浙江省中青年学科带头人学术攀登项目(批准号:pd2013158)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51276053, 51006029), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY14E060002), and the Young and middle-aged leading academic climbing project of Zhejiang Province, China (Grant No. pd2013158).
    [1]

    Epstein A H, Senturia S D, Anathasuresh G 1997 International Conference on Solid State Sensors and Actuators Chicago, June 16-19, 1999 p753

    [2]
    [3]

    Mehra A, Ay'on A A, Waitz I A 1999 J Microelectromech. S. 8 152

    [4]
    [5]

    Williams A 1973 Combust. Flame 2 1

    [6]

    Cen K F 2002 Advanced Combustion (Hangzhou: Zhejiang University Press) p241 (in Chinese)[岑可法 2002 高等燃烧学 (杭州: 浙江大学出版社) 第241页]

    [7]
    [8]
    [9]

    Maswadeh W, Arnold N S, McClennen W H 1993 Energy Fuels 7 1006

    [10]

    Qu M C, lshigaki M, Tokuda M 1996 Fuel 75 1155

    [11]
    [12]
    [13]

    Wong B A, Gavalas G R, Flaganf R C 1995 Energy Fuels 9 484

    [14]

    Granier J J, Pantoya M L 2004 Combust. Flame 138 373

    [15]
    [16]

    Poinsot T, Candel S, Trouv 1995 Prog. Energy Combust. Sci. 21 531

    [17]
    [18]
    [19]

    Ashkin A 1970 Phys. Rev. Lett. 2 4

    [20]

    Ashkin A, Dziedzic J M 1975 Science 187 4181

    [21]
    [22]
    [23]

    Ashkin A, Dziedzic J M 1997 App. Phys. Lett. 30 202

    [24]

    Ashkin A, Dziedzic J M 1977 Phys. Rev. Lett. 38 23

    [25]
    [26]

    Ashkin A, Dziedzic J M 1985 Phys. Rev. Lett. 54 1245

    [27]
    [28]

    Ashkin A, Dziedzic J M, Bjorkholm J E 1986 Opt. Lett. 11 5

    [29]
    [30]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W 2005 Nature 438 460

    [31]
    [32]
    [33]

    Dumont S, Cheng W, Serebrov V 2006 Nature 439 105

    [34]

    Chiou P Y, Ohta A T, Wu M C 2005 Nature 436 370

    [35]
    [36]

    Utkur M, Jan S, Winston T 2008 Lab. Chip. 8 12

    [37]
    [38]

    Chu S 1998 Rev. Mod. Phys. 70 3

    [39]
    [40]
    [41]

    Burnham D R, McGloin D 2006 Opt. Exp. 14 9

    [42]

    Leonardo R D, Leach J, Mushfique H 2006 Phys. Rev. Lett. 96 134502

    [43]
    [44]
    [45]

    McGloin D 2006 Phil. Trans. R. Soc. A 364 3521

    [46]
    [47]

    Gauthier R C, Wallace S 1995 J. Opt. Soc. Am. B 12 9

    [48]

    Kim J S, Lee S S 1983 J. Opt. Soc. Am. 7 3

    [49]
    [50]
    [51]

    Chang S, Lee S S 1985 J. Opt. Soc. Am. B 2 11

    [52]
    [53]

    Barton J P, Alexander D R, Schaub S A 1989 J. App. Phys. 66 4594

    [54]
    [55]

    Essenhigh R H, Misra M K, Shaw D W 1989 Combust. Flame 77 3

  • [1]

    Epstein A H, Senturia S D, Anathasuresh G 1997 International Conference on Solid State Sensors and Actuators Chicago, June 16-19, 1999 p753

    [2]
    [3]

    Mehra A, Ay'on A A, Waitz I A 1999 J Microelectromech. S. 8 152

    [4]
    [5]

    Williams A 1973 Combust. Flame 2 1

    [6]

    Cen K F 2002 Advanced Combustion (Hangzhou: Zhejiang University Press) p241 (in Chinese)[岑可法 2002 高等燃烧学 (杭州: 浙江大学出版社) 第241页]

    [7]
    [8]
    [9]

    Maswadeh W, Arnold N S, McClennen W H 1993 Energy Fuels 7 1006

    [10]

    Qu M C, lshigaki M, Tokuda M 1996 Fuel 75 1155

    [11]
    [12]
    [13]

    Wong B A, Gavalas G R, Flaganf R C 1995 Energy Fuels 9 484

    [14]

    Granier J J, Pantoya M L 2004 Combust. Flame 138 373

    [15]
    [16]

    Poinsot T, Candel S, Trouv 1995 Prog. Energy Combust. Sci. 21 531

    [17]
    [18]
    [19]

    Ashkin A 1970 Phys. Rev. Lett. 2 4

    [20]

    Ashkin A, Dziedzic J M 1975 Science 187 4181

    [21]
    [22]
    [23]

    Ashkin A, Dziedzic J M 1997 App. Phys. Lett. 30 202

    [24]

    Ashkin A, Dziedzic J M 1977 Phys. Rev. Lett. 38 23

    [25]
    [26]

    Ashkin A, Dziedzic J M 1985 Phys. Rev. Lett. 54 1245

    [27]
    [28]

    Ashkin A, Dziedzic J M, Bjorkholm J E 1986 Opt. Lett. 11 5

    [29]
    [30]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W 2005 Nature 438 460

    [31]
    [32]
    [33]

    Dumont S, Cheng W, Serebrov V 2006 Nature 439 105

    [34]

    Chiou P Y, Ohta A T, Wu M C 2005 Nature 436 370

    [35]
    [36]

    Utkur M, Jan S, Winston T 2008 Lab. Chip. 8 12

    [37]
    [38]

    Chu S 1998 Rev. Mod. Phys. 70 3

    [39]
    [40]
    [41]

    Burnham D R, McGloin D 2006 Opt. Exp. 14 9

    [42]

    Leonardo R D, Leach J, Mushfique H 2006 Phys. Rev. Lett. 96 134502

    [43]
    [44]
    [45]

    McGloin D 2006 Phil. Trans. R. Soc. A 364 3521

    [46]
    [47]

    Gauthier R C, Wallace S 1995 J. Opt. Soc. Am. B 12 9

    [48]

    Kim J S, Lee S S 1983 J. Opt. Soc. Am. 7 3

    [49]
    [50]
    [51]

    Chang S, Lee S S 1985 J. Opt. Soc. Am. B 2 11

    [52]
    [53]

    Barton J P, Alexander D R, Schaub S A 1989 J. App. Phys. 66 4594

    [54]
    [55]

    Essenhigh R H, Misra M K, Shaw D W 1989 Combust. Flame 77 3

  • [1] 宁鲁慧, 张雪, 杨明成, 郑宁, 刘鹏, 彭毅. 活性浴中惰性粒子形状对有效作用力的影响.  , 2024, 73(15): 158202. doi: 10.7498/aps.73.20240650
    [2] 王焱, 彭妙, 程伟, 彭政, 成浩, 臧圣寅, 刘浩, 任孝东, 帅雨贝, 黄承志, 吴加贵, 杨俊波. 基于低损光学相变和超透镜的可控多阱光镊.  , 2023, 72(2): 027801. doi: 10.7498/aps.72.20221794
    [3] 白靖, 葛城显, 何浪, 刘轩, 吴振森. 椭圆波束对非均匀手征分层粒子的俘获特性研究.  , 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [4] 蒋城露, 王昂, 赵锋, 尚海林, 张明建, 刘福生, 刘其军. 基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理.  , 2019, 68(22): 228301. doi: 10.7498/aps.68.20190993
    [5] 王玥, 梁言生, 严绍辉, 曹志良, 蔡亚楠, 张艳, 姚保利, 雷铭. 轴向多光阱微粒捕获与实时直接观测技术.  , 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [6] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术.  , 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [7] 张志刚, 刘丰瑞, 张青川, 程腾, 伍小平. 空间散斑场捕获大量吸光性颗粒及其红外显微观测.  , 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [8] 张志刚, 刘丰瑞, 张青川, 程腾, 高杰, 伍小平. 红外显微观测被俘获吸光性颗粒.  , 2013, 62(20): 208702. doi: 10.7498/aps.62.208702
    [9] 任洪亮. 有限远共轭显微镜光镊设计和误差分析.  , 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [10] 周丹丹, 任煜轩, 刘伟伟, 龚雷, 李银妹. 时间飞行法测量光阱刚度的实验研究.  , 2012, 61(22): 228702. doi: 10.7498/aps.61.228702
    [11] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响.  , 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [12] 炎正馨. 激波诱导下纳米铝粉与微米铝粉的爆炸特征对比研究.  , 2011, 60(7): 076202. doi: 10.7498/aps.60.076202
    [13] 胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平. 时域有限差分法数值仿真单光镊中微球受到的光阱力.  , 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [14] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力.  , 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [15] 杨 浩, 冯国英, 朱启华, 张大勇, 周寿桓. 聚焦光场俘获微球的FDTD分析.  , 2008, 57(9): 5506-5512. doi: 10.7498/aps.57.5506
    [16] 曾夏辉, 吴逢铁, 刘 岚. 干涉理论对bottle beam的描述.  , 2007, 56(2): 791-797. doi: 10.7498/aps.56.791
    [17] 韩一平, 杜云刚, 张华永. 高斯波束对双层粒子的辐射俘获力.  , 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [18] 徐春华, 刘春香, 郭红莲, 李兆霖, 降雨强, 张道中, 袁 明. 荧光标记微管的光敏断裂及机理.  , 2006, 55(1): 206-210. doi: 10.7498/aps.55.206
    [19] 张艳丽, 赵逸琼, 詹其文, 李永平. 高数值孔径聚焦三维光链的研究.  , 2006, 55(3): 1253-1258. doi: 10.7498/aps.55.1253
    [20] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度.  , 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
计量
  • 文章访问数:  5735
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-26
  • 修回日期:  2014-05-28
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map