Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in the mechanism of mechanochemical coupling of kinesin

Li Ming Ouyang Zhong-Can Shu Yao-Gen

Citation:

Advances in the mechanism of mechanochemical coupling of kinesin

Li Ming, Ouyang Zhong-Can, Shu Yao-Gen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Kinesin is one of the most important linear motors for intracellular transport. It has two main features. One is its persistence: at least one head is attached to the microtubule during stepping, so that it can move a long distance before detaching. Another feature is the tight mechanochemical coupling: it consumes one adenosine-triphosphate for each step. Therefore, there should be a mechanism responsible for the coordination of the two heads to achieve the high persistence and tight coupling. The underlying mechanism is the mechanochemical coupling, which is the basic issue for all chemical-driven molecular motors. Owing to the developments of single-molecule experiments and molecular dynamics simulations, a breakthrough in the coupling mechanism has been made in recent decades. In this article, we review the progress of the relevant researches from the perspective of kinematics, energetics, coordination of two heads and force generating mechanism. We also present a personal perspective on the future studies of kinesin.
      Corresponding author: Shu Yao-Gen, shuyg@itp.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB932804), the National Natural Science Foundation of China (Grant Nos. 11574329, 11322543, 11105218), and the Joint NSFC-ISF Research Program (Grant No. 51561145002).
    [1]

    Shu Y G, Ouyang Z C 2007 Physics 36 735 (in Chinese) [舒咬根, 欧阳钟灿 2007 物理 36 735]

    [2]

    Berlinrood M, McGee-Russell S M, Allen R D 1972 J. Cell Sci. 11 875

    [3]

    Allen R D, Allen N S, Travis J L 1981 Cell Motil. 1 291

    [4]

    Allen R D, Allen N S 1983 J. Microscopy 129 3

    [5]

    Allen R D, Metuzals J, Tasahi I, et al. 1982 Science 218 1127

    [6]

    Brady S T, Lasek R J, Allen R D 1982 Science 218 1129

    [7]

    Allen R D, Weiss D G, Hayden J H, et al. 1985 J. Cell Biol. 100 1736

    [8]

    Vale R D, Schnapp B J, Reese T S, et al. 1985 Cell 40 449

    [9]

    Vale R D, Schnapp B J, Reese T S, et al. 1985 Cell 40 559

    [10]

    Vale R D, Reese T S, Sheetz M P 1985 Cell 42 39

    [11]

    Brady S T 1985 Nature 317 73

    [12]

    Lawrence C J, Dawe R K, Christie K R, et al. 2004 J. Cell Biol. 167 19

    [13]

    Bloom G S, Wagner M C, Pfister K K, et al. 1988 Biochemistry 27 3409

    [14]

    Kuznetsov S A, Vaisberg E A, Shanina N A, et al. 1988 EMBO J. 7 353

    [15]

    Hirokawa N, Pfister K K, Yorifuji H, et al. 1989 Cell 56 867

    [16]

    Song Y H, Mandelkow E 1993 PNAS. 90 1671

    [17]

    Kull F J, Sablin E P, Lau R, et al. 1996 Nature 380 550

    [18]

    Sablin E P, Kull F J, Cooke R, et al. 1996 Nature 380 555

    [19]

    Kozielski F, Sack S, Marx A, et al. 1997 Cell 91 985

    [20]

    Case R B, Pierce D W, Hom-Booher N, et al. 1997 Cell 90 959

    [21]

    Rice S, Lin A W, Safer D, et al. 1999 Nature 402 778

    [22]

    Ashkin A, Dziedzic J M, Bjorkholm J E, et al. 1986 Opt. Lett. 11 288

    [23]

    Ashkin A, Dziedzic J M 1987 Science 235 1517

    [24]

    Visscher K, Schnitzer M J, Block S M 1999 Nature 400 184

    [25]

    Svoboda K, Schmidt C F, Schnapp B J, et al. 1993 Nature 365 721

    [26]

    Hua W, Chung J, Gelles J 2002 Science 295 844

    [27]

    Yildiz A, Tomishige M, Vale R D, et al. 2004 Science 303 676

    [28]

    Schief W R, Clark R H, Crevenna A H, et al. 2004 . PNAS 101 1183

    [29]

    Kodera N, Yamamoto D, Ishikawa R, et al. 2010 Nature 468 72

    [30]

    Jlicher F, Ajdari A, Prost J 1997 Rev. Mod. Phys. 69 1269

    [31]

    Hua W, Young E C, Fleming M L, et al. 1997 Nature 388 390

    [32]

    Coy D L, Wagenbach M, Howard J 1999 J. Biol. Chem. 274 3667

    [33]

    Chemla Y R, Moffitt J R, Bustamante C 2008 J. Phys. Chem. 112 6025

    [34]

    Svoboda K, Mitra P P, Block S M 1994 PNAS 91 11782

    [35]

    Schnitzer M J, Block S M 1995 Cold Spring Harbor Symposia on Quantitative Biology LX 793

    [36]

    Schnitzer M J, Block S M 1997 Nature 388 386

    [37]

    Yildiz A, Tomishige M, Gennerich A, et al. 2008 Cell 134 1030

    [38]

    Clancy B E, Behnke-Parks W M, Andreasson J O L, et al. 2011 Nat. Struct. Mol. Biol. 18 1020

    [39]

    Rosenfeld S S, Fordyce P M, Jefferson G M, et al. 2003 J. Biol. Chem. 278 18550

    [40]

    Kawaguchi K, Ishiwata S 2001 Science 291 667

    [41]

    Block S M 2007 Biophys. J. 92 2986

    [42]

    Miyazono Y, Hayashi M, Karagiannis P, et al. 2010 EMBO J. 29 93

    [43]

    Hackney D D, Stock M F, Moore J, et al. 2003 Biochemistry 42 12011

    [44]

    Dogan M Y, Can S, Cleary F B, et al. 2015 Cell Rep. 10 1967

    [45]

    Hwang W, Lang M J, Karplus M 2008 Structure 16 62

    [46]

    Milic B, Andreasson J O, Hancock W O, et al. 2014 PNAS 111 14136

    [47]

    Andreasson J O, Milic B, Chen G Y, et. al. 2015 Elife Sciences 4 e07403

    [48]

    Mickolajczyk K J, Deffenbaugh N C, Ortega Arroyo J, et al. 2015 PNAS 112 E7186

    [49]

    Shu Y G, Zhang X H, Ouyang Z C, et al. 2012 J. Phys: Condens. Matter 24 035105

    [50]

    Bornschlgl T, Woehlke G, Rief M 2009 PNAS 106 6992

    [51]

    Coppin C M, Finer J T, Spudich J A, et al. 1996 PNAS 93 1913

    [52]

    Nishiyama M, Muto E, Inoue Y, et al. 2001 Nat. Cell Biol. 3 425

    [53]

    Taniguchi Y, Nishiyama M, Ishii Y, et al. 2005 Nat. Chem. Biol. 1 342

    [54]

    Zhang Z, Thirumalai D 2012 Structure 20 628

    [55]

    Wade R H, Kozielski F 2000 Nat. Struct. Biol. 7 456

    [56]

    Rice S, Cui Y, Sindelar C, et al. 2003 Biophys. J. 84 1844

    [57]

    Carter N J, Cross R A 2005 Nature 435 308

    [58]

    Fox R F, Choi M H 2001 Phys. Rev. E. 63 051901

    [59]

    Mather W H, Fox R F 2006 Biophys. J. 91 2416

    [60]

    Astumian R D 2015 Biophys. J. 108 291

    [61]

    Hopfield J J 1974 PNAS 71 4135

    [62]

    Khalil A S, Appleyard D C, Labno A K, et. al. 2009 PNAS 105 19247

    [63]

    Svoboda K, Block S M 1994 Cell 77 773

    [64]

    Nishiyama M, Higuchi H, Yanagida T 2002 Nat. Cell Biol. 4 790

    [65]

    Kolomeisky A B, Fisher M E 2007 Annu. Rev. Phys. Chem. 58 675

    [66]

    Liepelt S, Lipowsky R 2007 Phys. Rev. Lett. 98 258102

    [67]

    Hyeon C, Klumpp S, Onuchic J N 2009 Phys. Chem. Chem. Phys. 11 4899

    [68]

    Shu Y G, Ouyang Z C 2007 Chinese Journal of Nature 29 249 (in Chinese) [舒咬根, 欧阳钟灿 2007 自然杂志 29 249]

    [69]

    Shu Y G, Lai P Y 2008 J. Phys. Chem. B 112 13453

    [70]

    Toyabe S, Watanabe-Nakayama T, Okamoto T, et al. 2011 PNAS 108 17951

    [71]

    Toyabe S, Muneyuki E 2015 New J. Phys. 17 015008

    [72]

    Tsygankov D, Lindn M, Fisher M E 2006 Phys. Rev. E. 75 95

    [73]

    Chowdhury D 2012 Phys. Rep. 529 1

  • [1]

    Shu Y G, Ouyang Z C 2007 Physics 36 735 (in Chinese) [舒咬根, 欧阳钟灿 2007 物理 36 735]

    [2]

    Berlinrood M, McGee-Russell S M, Allen R D 1972 J. Cell Sci. 11 875

    [3]

    Allen R D, Allen N S, Travis J L 1981 Cell Motil. 1 291

    [4]

    Allen R D, Allen N S 1983 J. Microscopy 129 3

    [5]

    Allen R D, Metuzals J, Tasahi I, et al. 1982 Science 218 1127

    [6]

    Brady S T, Lasek R J, Allen R D 1982 Science 218 1129

    [7]

    Allen R D, Weiss D G, Hayden J H, et al. 1985 J. Cell Biol. 100 1736

    [8]

    Vale R D, Schnapp B J, Reese T S, et al. 1985 Cell 40 449

    [9]

    Vale R D, Schnapp B J, Reese T S, et al. 1985 Cell 40 559

    [10]

    Vale R D, Reese T S, Sheetz M P 1985 Cell 42 39

    [11]

    Brady S T 1985 Nature 317 73

    [12]

    Lawrence C J, Dawe R K, Christie K R, et al. 2004 J. Cell Biol. 167 19

    [13]

    Bloom G S, Wagner M C, Pfister K K, et al. 1988 Biochemistry 27 3409

    [14]

    Kuznetsov S A, Vaisberg E A, Shanina N A, et al. 1988 EMBO J. 7 353

    [15]

    Hirokawa N, Pfister K K, Yorifuji H, et al. 1989 Cell 56 867

    [16]

    Song Y H, Mandelkow E 1993 PNAS. 90 1671

    [17]

    Kull F J, Sablin E P, Lau R, et al. 1996 Nature 380 550

    [18]

    Sablin E P, Kull F J, Cooke R, et al. 1996 Nature 380 555

    [19]

    Kozielski F, Sack S, Marx A, et al. 1997 Cell 91 985

    [20]

    Case R B, Pierce D W, Hom-Booher N, et al. 1997 Cell 90 959

    [21]

    Rice S, Lin A W, Safer D, et al. 1999 Nature 402 778

    [22]

    Ashkin A, Dziedzic J M, Bjorkholm J E, et al. 1986 Opt. Lett. 11 288

    [23]

    Ashkin A, Dziedzic J M 1987 Science 235 1517

    [24]

    Visscher K, Schnitzer M J, Block S M 1999 Nature 400 184

    [25]

    Svoboda K, Schmidt C F, Schnapp B J, et al. 1993 Nature 365 721

    [26]

    Hua W, Chung J, Gelles J 2002 Science 295 844

    [27]

    Yildiz A, Tomishige M, Vale R D, et al. 2004 Science 303 676

    [28]

    Schief W R, Clark R H, Crevenna A H, et al. 2004 . PNAS 101 1183

    [29]

    Kodera N, Yamamoto D, Ishikawa R, et al. 2010 Nature 468 72

    [30]

    Jlicher F, Ajdari A, Prost J 1997 Rev. Mod. Phys. 69 1269

    [31]

    Hua W, Young E C, Fleming M L, et al. 1997 Nature 388 390

    [32]

    Coy D L, Wagenbach M, Howard J 1999 J. Biol. Chem. 274 3667

    [33]

    Chemla Y R, Moffitt J R, Bustamante C 2008 J. Phys. Chem. 112 6025

    [34]

    Svoboda K, Mitra P P, Block S M 1994 PNAS 91 11782

    [35]

    Schnitzer M J, Block S M 1995 Cold Spring Harbor Symposia on Quantitative Biology LX 793

    [36]

    Schnitzer M J, Block S M 1997 Nature 388 386

    [37]

    Yildiz A, Tomishige M, Gennerich A, et al. 2008 Cell 134 1030

    [38]

    Clancy B E, Behnke-Parks W M, Andreasson J O L, et al. 2011 Nat. Struct. Mol. Biol. 18 1020

    [39]

    Rosenfeld S S, Fordyce P M, Jefferson G M, et al. 2003 J. Biol. Chem. 278 18550

    [40]

    Kawaguchi K, Ishiwata S 2001 Science 291 667

    [41]

    Block S M 2007 Biophys. J. 92 2986

    [42]

    Miyazono Y, Hayashi M, Karagiannis P, et al. 2010 EMBO J. 29 93

    [43]

    Hackney D D, Stock M F, Moore J, et al. 2003 Biochemistry 42 12011

    [44]

    Dogan M Y, Can S, Cleary F B, et al. 2015 Cell Rep. 10 1967

    [45]

    Hwang W, Lang M J, Karplus M 2008 Structure 16 62

    [46]

    Milic B, Andreasson J O, Hancock W O, et al. 2014 PNAS 111 14136

    [47]

    Andreasson J O, Milic B, Chen G Y, et. al. 2015 Elife Sciences 4 e07403

    [48]

    Mickolajczyk K J, Deffenbaugh N C, Ortega Arroyo J, et al. 2015 PNAS 112 E7186

    [49]

    Shu Y G, Zhang X H, Ouyang Z C, et al. 2012 J. Phys: Condens. Matter 24 035105

    [50]

    Bornschlgl T, Woehlke G, Rief M 2009 PNAS 106 6992

    [51]

    Coppin C M, Finer J T, Spudich J A, et al. 1996 PNAS 93 1913

    [52]

    Nishiyama M, Muto E, Inoue Y, et al. 2001 Nat. Cell Biol. 3 425

    [53]

    Taniguchi Y, Nishiyama M, Ishii Y, et al. 2005 Nat. Chem. Biol. 1 342

    [54]

    Zhang Z, Thirumalai D 2012 Structure 20 628

    [55]

    Wade R H, Kozielski F 2000 Nat. Struct. Biol. 7 456

    [56]

    Rice S, Cui Y, Sindelar C, et al. 2003 Biophys. J. 84 1844

    [57]

    Carter N J, Cross R A 2005 Nature 435 308

    [58]

    Fox R F, Choi M H 2001 Phys. Rev. E. 63 051901

    [59]

    Mather W H, Fox R F 2006 Biophys. J. 91 2416

    [60]

    Astumian R D 2015 Biophys. J. 108 291

    [61]

    Hopfield J J 1974 PNAS 71 4135

    [62]

    Khalil A S, Appleyard D C, Labno A K, et. al. 2009 PNAS 105 19247

    [63]

    Svoboda K, Block S M 1994 Cell 77 773

    [64]

    Nishiyama M, Higuchi H, Yanagida T 2002 Nat. Cell Biol. 4 790

    [65]

    Kolomeisky A B, Fisher M E 2007 Annu. Rev. Phys. Chem. 58 675

    [66]

    Liepelt S, Lipowsky R 2007 Phys. Rev. Lett. 98 258102

    [67]

    Hyeon C, Klumpp S, Onuchic J N 2009 Phys. Chem. Chem. Phys. 11 4899

    [68]

    Shu Y G, Ouyang Z C 2007 Chinese Journal of Nature 29 249 (in Chinese) [舒咬根, 欧阳钟灿 2007 自然杂志 29 249]

    [69]

    Shu Y G, Lai P Y 2008 J. Phys. Chem. B 112 13453

    [70]

    Toyabe S, Watanabe-Nakayama T, Okamoto T, et al. 2011 PNAS 108 17951

    [71]

    Toyabe S, Muneyuki E 2015 New J. Phys. 17 015008

    [72]

    Tsygankov D, Lindn M, Fisher M E 2006 Phys. Rev. E. 75 95

    [73]

    Chowdhury D 2012 Phys. Rep. 529 1

  • [1] Wang Li-Na, Chen Li, Sheng Min-Jia, Wang Lei-Lei, Cui Hai-Hang, Zheng Xu, Huang Ming-Hua. Interface evolution mechanism of dual-bubble coalescence driving micromotors in bulk phase. Acta Physica Sinica, 2023, 72(16): 164703. doi: 10.7498/aps.72.20230608
    [2] Tian Xiao-Jun, Kong Fan-Fang, Jing Shi-Hao, Yu Yun-Jie, Zhang Yao, Zhang Yang, Dong Zhen-Chao. Probing vibronic coupling of a transiently charged state of a single molecule through subnanometer resolved electroluminescence imaging. Acta Physica Sinica, 2022, 71(6): 063301. doi: 10.7498/aps.71.20212003
    [3] Zhang Xu, Cao Jia-Hui, Ai Bao-Quan, Gao Tian-Fu, Zheng Zhi-Gang. Investigation on the directional transportation of coupled Brownian motors with asymmetric friction. Acta Physica Sinica, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [4] Wang Qiong, Wang Kai-Ge, Meng Kang Kang, Sun Dan, Han Tong Yu, Gao Ai-Hua. Electrodynamic characteristics of λ-DNA molecule translocating through the microfluidic channel port studied with single molecular fluorescence imaging technology. Acta Physica Sinica, 2020, 69(16): 168202. doi: 10.7498/aps.69.20200074
    [5] Yu Bo, Yin Chuan-Sheng, Sun Chuan-Kui, Hou Li-Fei, Song Tian-Ming, Du Hua-Bing, Guan Zan-Yang, Zhang Wen-Hai, Yuan Zheng, Li Chao-Guang, Dong Yun-Song, Jiang Wei, Huang Tian-Xuan, Pu Yu-Dong, Yan Ji, Chen Zhong-Jing, Yang Jia-Min, Jiang Shao-En. Laser energy coupling and partitioning of silver spheral hohlraum with one laser entrance hole. Acta Physica Sinica, 2019, 68(23): 235201. doi: 10.7498/aps.68.20191026
    [6] Lu Yue, Ma Jian-Bing, Teng Cui-Juan, Lu Ying, Li Ming, Xu Chun-Hua. Binding process between E.coli SSB and ssDNA by single-molecule dynamics. Acta Physica Sinica, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [7] Shi Yong-Qiang, Kong Wei-Long, Wu Ren-Cun, Zhang Wen-Xuan, Tan Lei. Single photon transport by a quantized cavity field driven cascade-type three-level atom in a dissipative coupled cavity array. Acta Physica Sinica, 2017, 66(5): 054204. doi: 10.7498/aps.66.054204
    [8] Zhou Hao-Tian, Gao Xiang, Zheng Peng, Qin Meng, Cao Yi, Wang Wei. Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy. Acta Physica Sinica, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [9] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [10] Ren Rui-Bin, Liu De-Hao, Wang Chuan-Yi, Luo Mao-Kang. Directed transport of fractional Brownian motor driven by a temporal asymmetry force. Acta Physica Sinica, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [11] Qin Tian-Qi, Wang Fei, Yang Bo, Luo Mao-Kang. Transport properties of fractional coupled Brownian motors in ratchet potential with feedback. Acta Physica Sinica, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [12] Xie Tian-Ting, Zhang Lu, Wang Fei, Luo Mao-Kang. Direct transport of fractional overdamped deterministic motors in spatial symmetric potentials driven by biharmonic forces. Acta Physica Sinica, 2014, 63(23): 230503. doi: 10.7498/aps.63.230503
    [13] Li Chen-Pu, Han Ying-Rong, Zhan Yong, Xie Ge-Ying, Hu Jin-Jiang, Zhang Li-Gang, Jia Li-Yun. The single-direction energy transition model of molecular motor based on the control of adenosine triphosphate. Acta Physica Sinica, 2013, 62(19): 190501. doi: 10.7498/aps.62.190501
    [14] Lin Li-Feng, Zhou Xing-Wang, Ma Hong. Subdiffusive transport of fractional two-headed molecular motor. Acta Physica Sinica, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [15] Li Chen-Pu, Han Ying-Rong, Zhan Yong, Hu Jin-Jiang, Zhang Li-Gang, Qu Jiao. An elastic-diffusion model for myosin Ⅵ molecular motor in a periodic potential field. Acta Physica Sinica, 2013, 62(23): 230501. doi: 10.7498/aps.62.230501
    [16] Wang Fei, Deng Cui, Tu Zhe, Ma Hong. Transport of fractional coupled Brownian motor in asymmetric periodic potential. Acta Physica Sinica, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [17] Liu Zhong-Qiang, Gan Kong-Yin, Li Ying-Jun, Jiang Su-Rong. Elecrohydrodynamical characteristics of liquid film motor driven by a square-wave electrophoresis electric field. Acta Physica Sinica, 2012, 61(13): 134703. doi: 10.7498/aps.61.134703
    [18] Wang Yu, Zhang Lin-Xi. Steered molecular dynamics investigation of force-induced detachment of adsorbed single polymer chains. Acta Physica Sinica, 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [19] Liu Cheng-Shi, Ma Ben-Kun, Wang Li-Min. Dynamic behaviours of an exciton confined in coupled quantum dots driven by an a lternating current electrical field. Acta Physica Sinica, 2003, 52(8): 2020-2026. doi: 10.7498/aps.52.2020
    [20] QIN WEI-PING, QIN GUAN-SHI, ZHANG JI-SHEN, WU CHANG-FENG, WANG JI-WEI, DU GUO-TONG. THERMODYNAMIC BEHAVIOR OF SMPC. Acta Physica Sinica, 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
Metrics
  • Abstract views:  6273
  • PDF Downloads:  386
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2016
  • Accepted Date:  02 August 2016
  • Published Online:  05 September 2016

/

返回文章
返回
Baidu
map