搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肌球蛋白Ⅵ分子马达周期势场下的弹性扩散模型

李晨璞 韩英荣 展永 胡金江 张礼刚 曲蛟

引用本文:
Citation:

肌球蛋白Ⅵ分子马达周期势场下的弹性扩散模型

李晨璞, 韩英荣, 展永, 胡金江, 张礼刚, 曲蛟

An elastic-diffusion model for myosin Ⅵ molecular motor in a periodic potential field

Li Chen-Pu, Han Ying-Rong, Zhan Yong, Hu Jin-Jiang, Zhang Li-Gang, Qu Jiao
PDF
导出引用
  • 肌球蛋白Ⅵ分子马达因其特殊的结构及胞内功能,其动力学原理成为研究的热点. 从肌球蛋白Ⅵ自身结构和实验现象出发,建立其弹性扩散模型,并通过Monte Carlo方法分析了肌球蛋白Ⅵ满足朗之万方程的随机动力学行为. 结果表明,在环境噪声作用下,具有弹性势能和轨道周期势能的肌球蛋白Ⅵ可以进行梯跳运动和有效的输运,但负载力会减弱分子马达系统的输运能力;当弹性系数一定时,弹性链越长平均速度越小,当弹性链长度一定时,合理选择弹性系数平均速度可达到最大值;另外,负载力的存在使肌球蛋白Ⅵ在接触位点的平均驻留时间呈指数增加.
    Because of the special structure and intracellular functions of myosin Ⅵ molecular motor, its dynamic principle has become a research focus. Starting from its structure and experimental phenomenon, the elastic-diffusion model of myosin Ⅵ in a periodic potential field is established, and the stochastic dynamics of the molecular motors, which conform to the Langevin equation, is analyzed by Monte Carlo simulations. By means of the environmental noise, myosin Ⅵ molecular motors could take stable stepping motion and effective transport according to its elastic potential energy and periodic potential of track, and a load can weaken the transportation power of the molecular motor system. For a given elastic coefficient, the longer the elastic chain of myosin Ⅵ, the lower the average velocity of it. By selecting a reasonable size of elasticity coefficient, the average velocity can be the maximum for a given elastic chain. In addition, the load can increase exponentially the mean dwelling time of myosin Ⅵ at the connection site.
    • 基金项目: 国家自然科学基金(批准号:10975045)、河北省教育厅科研基金(批准号:2008427c,Z2012175)和张家口市科学技术研究项目(批准号:1101006B)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10975045), the Scientific Research Fundation of the Education Department of Hebei Province, China (Grant Nos. 2008427c, Z2012175), and the Scientific Research Fundation of ZhangJiaKou City, Hebei Province, China(Grant No. 1101006B).
    [1]

    Rogat A D, Miler K G 2002 Journal of Cell Sciencs 115 4855

    [2]

    Hasson T, Gillespie P G, Garcia J A, MacDonald R B, Zhao Y D, Yee A G, Mooseker M S, Corey D P 1997 Journal of Cell Biology 137 1287

    [3]

    Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Iwone A H, Saito J, Ikebe R, Katayama E, Yanagida T, Ikebe M 2002 Biochemical Biophysical Rresearch Communications 290 311

    [4]

    Lister I, Schmitz S, Walker M, Trinick J, Buss F, Veigel C, Kendrick-Jones J 2004 EMBO Journal 23 1729

    [5]

    Rock R S, Ramamurthy B, Dunn A R, Beccafico S, Rami B R, Morris C, Spink B J, Franzini-Armstrong C, Spudich J A, Sweeney H L 2005 Molecular Cell 17 603

    [6]

    Xie P, Dou S X, Wang P Y 2005 Chin. Phys. 14 744

    [7]

    Xie P, Dou S X, Wang P Y 2005 Biophysical Chemistry 122 90

    [8]

    Bahloul A, Chevreux G, Wells A L, Martin D, Nolt J, Yang Z H, Chen L Q, Potier N, Dorsselaer A V, Rosenfeld S, Houdusse H, Sweeney H L 2004 PNAS 101 4787

    [9]

    Hasson T, Mooseker E M 1994 Journal of Cell Biology 127 425

    [10]

    Ménétrey J, Bahloul A, Wells A L, Yengo C M, Morris C A, Sweeney H L, Houdusse A 2005 Nature 435 779

    [11]

    Park H, Li A, Chen L Q, Houdusse A, Selvin P R, Sweeney H L 2007 PNAS 104 778

    [12]

    Altman D, Sweeney H L, Spudich J A 2004 Cell 116 737

    [13]

    De La Cruz E M, Ostap E M, Sweeney H L 2001 Journal of Biological Chemistry 276 32373

    [14]

    Reifenberger J G, Toprak E, Kim H J, Safer D, Sweeney H L, Selvin P R 2009 PNAS 106 18255

    [15]

    Bao J D, Zhuo Y Z 1998 Chinese Science Bulletin 43 1493

    [16]

    Bao J D 1997 Chinese Journal of Computational Physics 14 463 (in Chinese) [包景东 1997 计算物理 14 463]

    [17]

    Marchesoni F 1997 Physical Review E 56 2497

    [18]

    Guo C, Yin Y H 2010 Chinese Science Bulletin 55 2675 (in Chinese) [郭朝, 殷跃红 2010 科学通报 55 2675]

    [19]

    Kolomeisky A B, Fisher M E 2003 Biophysical Journal 84 1642

    [20]

    Xu W, Zhang X Y 2007 Chin. Phys. 16 928

    [21]

    Wang H Y, Bao J D 2010 Physica A 389 433

    [22]

    Li F Z, Su W F, Hu K H 2009 Acta Biophysica Sinica 25 133 (in Chinese) [李防震, 苏万芳, 胡匡祜 2009 生物 25 133]

    [23]

    Feng J, Zhuo Y Z 2005 Chin. Phys. Lett. 22 503

    [24]

    Chen Z X 2003 Computational physics (Vol. 2) (Harbin: Harbin Institute of Technology Press) p92 (in Chinese) [陈锺贤 2003 计算物理学(第二版)(哈尔滨: 哈尔滨工业大学出版社)第92页]

    [25]

    Bao J D 2009 Stochastic simulation method of classical and quantum dissipative systems (BeiJing: Science Press) p113 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法(北京: 科学出版社)第113页]

    [26]

    Spudich J A, Sivaramakrishnan S 2010 Nature Reviews Molecular Cell Biology 11 128

  • [1]

    Rogat A D, Miler K G 2002 Journal of Cell Sciencs 115 4855

    [2]

    Hasson T, Gillespie P G, Garcia J A, MacDonald R B, Zhao Y D, Yee A G, Mooseker M S, Corey D P 1997 Journal of Cell Biology 137 1287

    [3]

    Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Iwone A H, Saito J, Ikebe R, Katayama E, Yanagida T, Ikebe M 2002 Biochemical Biophysical Rresearch Communications 290 311

    [4]

    Lister I, Schmitz S, Walker M, Trinick J, Buss F, Veigel C, Kendrick-Jones J 2004 EMBO Journal 23 1729

    [5]

    Rock R S, Ramamurthy B, Dunn A R, Beccafico S, Rami B R, Morris C, Spink B J, Franzini-Armstrong C, Spudich J A, Sweeney H L 2005 Molecular Cell 17 603

    [6]

    Xie P, Dou S X, Wang P Y 2005 Chin. Phys. 14 744

    [7]

    Xie P, Dou S X, Wang P Y 2005 Biophysical Chemistry 122 90

    [8]

    Bahloul A, Chevreux G, Wells A L, Martin D, Nolt J, Yang Z H, Chen L Q, Potier N, Dorsselaer A V, Rosenfeld S, Houdusse H, Sweeney H L 2004 PNAS 101 4787

    [9]

    Hasson T, Mooseker E M 1994 Journal of Cell Biology 127 425

    [10]

    Ménétrey J, Bahloul A, Wells A L, Yengo C M, Morris C A, Sweeney H L, Houdusse A 2005 Nature 435 779

    [11]

    Park H, Li A, Chen L Q, Houdusse A, Selvin P R, Sweeney H L 2007 PNAS 104 778

    [12]

    Altman D, Sweeney H L, Spudich J A 2004 Cell 116 737

    [13]

    De La Cruz E M, Ostap E M, Sweeney H L 2001 Journal of Biological Chemistry 276 32373

    [14]

    Reifenberger J G, Toprak E, Kim H J, Safer D, Sweeney H L, Selvin P R 2009 PNAS 106 18255

    [15]

    Bao J D, Zhuo Y Z 1998 Chinese Science Bulletin 43 1493

    [16]

    Bao J D 1997 Chinese Journal of Computational Physics 14 463 (in Chinese) [包景东 1997 计算物理 14 463]

    [17]

    Marchesoni F 1997 Physical Review E 56 2497

    [18]

    Guo C, Yin Y H 2010 Chinese Science Bulletin 55 2675 (in Chinese) [郭朝, 殷跃红 2010 科学通报 55 2675]

    [19]

    Kolomeisky A B, Fisher M E 2003 Biophysical Journal 84 1642

    [20]

    Xu W, Zhang X Y 2007 Chin. Phys. 16 928

    [21]

    Wang H Y, Bao J D 2010 Physica A 389 433

    [22]

    Li F Z, Su W F, Hu K H 2009 Acta Biophysica Sinica 25 133 (in Chinese) [李防震, 苏万芳, 胡匡祜 2009 生物 25 133]

    [23]

    Feng J, Zhuo Y Z 2005 Chin. Phys. Lett. 22 503

    [24]

    Chen Z X 2003 Computational physics (Vol. 2) (Harbin: Harbin Institute of Technology Press) p92 (in Chinese) [陈锺贤 2003 计算物理学(第二版)(哈尔滨: 哈尔滨工业大学出版社)第92页]

    [25]

    Bao J D 2009 Stochastic simulation method of classical and quantum dissipative systems (BeiJing: Science Press) p113 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法(北京: 科学出版社)第113页]

    [26]

    Spudich J A, Sivaramakrishnan S 2010 Nature Reviews Molecular Cell Biology 11 128

  • [1] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离.  , 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [2] 李德彰, 卢智伟, 赵宇军, 杨小宝. 自旋半经典朗之万方程一般形式的探讨.  , 2023, 72(14): 140501. doi: 10.7498/aps.72.20230106
    [3] 刘春杰, 赵新军, 高志福, 蒋中英. 高分子混合刷吸附/脱附蛋白质的模型化研究.  , 2021, 70(22): 224701. doi: 10.7498/aps.70.20211219
    [4] 刘妮, 王建芬, 梁九卿. 双光腔耦合下机械振子的基态冷却.  , 2020, 69(6): 064202. doi: 10.7498/aps.69.20191541
    [5] 刘征宇, 杨昆, 魏自红, 姚利阳. 包含液相扩散方程简化的锂离子电池电化学模型.  , 2019, 68(9): 098801. doi: 10.7498/aps.68.20190159
    [6] 沈明仁, 刘锐, 厚美瑛, 杨明成, 陈科. 自扩散泳微观转动马达的介观模拟.  , 2016, 65(17): 170201. doi: 10.7498/aps.65.170201
    [7] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱.  , 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [8] 周先春, 汪美玲, 石兰芳, 周林锋. 基于小波与重调和方程的扩散去噪模型的研究.  , 2015, 64(6): 064203. doi: 10.7498/aps.64.064203
    [9] 邓琪敏, 邹亚中, 包景东. 耦合系统的朗之万动力学产生法.  , 2014, 63(17): 170502. doi: 10.7498/aps.63.170502
    [10] 周兴旺, 林丽烽, 马洪, 罗懋康. 空时非对称分数阶类Langevin棘齿.  , 2014, 63(16): 160503. doi: 10.7498/aps.63.160503
    [11] 林丽烽, 周兴旺, 马洪. 分数阶双头分子马达的欠扩散输运现象.  , 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [12] 李晨璞, 韩英荣, 展永, 谢革英, 胡金江, 张礼刚, 贾利云. 基于三磷酸腺苷调节的分子马达单向能量跃迁模型.  , 2013, 62(19): 190501. doi: 10.7498/aps.62.190501
    [13] 蒋泽南, 房超, 孙立风. 朗之万方程及其在蛋白质折叠动力学中的应用.  , 2011, 60(6): 060502. doi: 10.7498/aps.60.060502
    [14] 樊华, 李理, 袁坚, 山秀明. 互联网流量控制的朗之万模型及相变分析.  , 2009, 58(11): 7507-7513. doi: 10.7498/aps.58.7507
    [15] 李 微, 赵同军, 郭鸿涌, 纪 青, 展 永. 布朗马达的非均匀高斯跃迁模型.  , 2004, 53(11): 3684-3689. doi: 10.7498/aps.53.3684
    [16] 展永, 包景东, 卓益忠, 吴锡真. 布朗马达的定向输运模型.  , 1997, 46(10): 1880-1887. doi: 10.7498/aps.46.1880
    [17] 胡响明. 双光子双模激光的朗之万理论.  , 1995, 44(12): 1921-1928. doi: 10.7498/aps.44.1921
    [18] 胡响明, 汪德新. 光抽运双光子激光朗之万量子理论.  , 1992, 41(3): 437-441. doi: 10.7498/aps.41.437
    [19] 孙宗琦, 蒋方忻. 间隙原子非线性应力感生扩散的简化弹性偶极子模型.  , 1989, 38(10): 1679-1686. doi: 10.7498/aps.38.1679
    [20] 周光召, 苏肇冰, 郝柏林, 于渌. 非平衡统计场论与临界动力学(Ⅰ)——广义朗之万方程.  , 1980, 29(8): 961-968. doi: 10.7498/aps.29.961
计量
  • 文章访问数:  6084
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 修回日期:  2013-09-03
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map