Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Direct transport of fractional overdamped deterministic motors in spatial symmetric potentials driven by biharmonic forces

Xie Tian-Ting Zhang Lu Wang Fei Luo Mao-Kang

Citation:

Direct transport of fractional overdamped deterministic motors in spatial symmetric potentials driven by biharmonic forces

Xie Tian-Ting, Zhang Lu, Wang Fei, Luo Mao-Kang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Physical significance of fractional damping for order 0 p 2 is demonstrated from the perspective that it can be explained as the memory of acceleration. Based on Caputo's fractional derivatives, the transport phenomenon of fractional overdamped deterministic motors in spatial symmetric potentials driven by biharmonic forces is investigated numerically. Relationships between transport velocity and model parameters are analyzed. The effect of fractional order is discussed in detail. Research shows that the contribution of historical acceleration increases or decreases monotonously with the historical moment varying with different fractional orders. With certain parameters the transport velocity can show generalized resonance when the spatial potential depth or the external force frequency varies. Furthermore, for some large orders, the velocity varies in step with the variation of potential depth and is in a direct proportional to the frequency if there is transport. Effect of fractional damping is intimately linked with the shape of the force. The memory of damping force can promote or inhibit the particle transport under different conditions, thus triggering abundant transport behaviors.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11171238) and the Science and Technology on Electronic Information Control Laboratory Program, China (Grant No. 2013035).
    [1]

    Reimann P 2002 Phys. Rep. 361 57

    [2]

    Jung P, Kissner J G, Hanggi P 1996 Phys. Rev. Lett. 76 3436

    [3]

    Astumian R D 1997 Science 276 917

    [4]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [5]

    Tu Z C 2012 Chin. Phys. B 21 020513

    [6]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [7]

    Falo F, Martinez P J, Mazo J J, Cilla S 1999 Europhys. Lett. 45 700

    [8]

    Csahók Z, Family F, Vicsek T 1997 Phys. Rev. E 55 5179

    [9]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [10]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [11]

    Zheng Z G, Li X W 2001 Commun. Theor. Phys. 36 151

    [12]

    Parrondo J M R, de Cisneros B J 2002 Appl. Phys. A 75 179

    [13]

    Hanggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [14]

    Reguera D, Rubi J M 2001 Phys. Rev. E 64 061106

    [15]

    Reguera D, Schmid G, Burada P S, Rubi J M, Reimann P, Hanggi P 2006 Phys. Rev. Lett. 96 130603

    [16]

    Martens S, Schmid G, Schimansky-Geier L, Hanggi P 2011 Phys. Rev. E 83 051135

    [17]

    Malgaretti P, Pagonabarraga I, Rubi J M 2013 J. Chem. Phys. 138 194906

    [18]

    Liu J L, He J Z 2010 Chin. Phys. B 19 030504

    [19]

    Zeng C H, Wang H, Wang H T 2011 Chin. Phys. B 20 050502

    [20]

    Ai B Q, Wu J C 2013 J. Chem. Phys. 139 034114

    [21]

    Flach S, Yevtushenko O, Zolotaryuk Y 2000 Phys. Rev. Lett. 84 11

    [22]

    Quintero N R, Jose A, Cuesta J A, Alvarez-Nodarse R 2010 Phys. Rev. E 81 030102

    [23]

    Savel'ev S, Marchesoni F, Hanggi P, Nori F 2004 Europhys. Lett. 67 179

    [24]

    Borromeo M, Marchesoni F 2006 Phys. Rev. E 73 016142

    [25]

    Machura L, Kostur M, Luczka J 2010 Chem. Phys. 375 445

    [26]

    Brown M, Renzoni F 2008 Phys. Rev. A 77 033405

    [27]

    Chen W, Sun H G, Li X C 2010 Fractional Derivative Modeling of Mechanical and Engineering Problems (Beijing: Science Press) p125 (in Chinese) [陈文, 孙洪广, 李西成 2010 机械和工程问题的分数阶导数模型 (北京: 科学出版社)第125页]

    [28]

    Hilfer R 2003 Applications of Fractional Calculus in Physics (Singapore: World Scientific)

    [29]

    Torvik P J, Bagley R L 1984 J. Appl. Mech. 51 294

    [30]

    Gao S L, Zhong S C, Wei K, Ma H 2012 Acta Phys. Sin. 61 100502 (in Chinese) [高仕龙, 钟苏川, 韦鹍, 马洪 2012 61 100502]

    [31]

    Shen S J, Liu F W 2004 J. Xiamen Univ. (Nat. Sci.) 43 306 (in Chinese) [沈淑君, 刘发旺2004 厦门大学学报 (自然科学版) 43 306]

    [32]

    del-Castillo-Negrete D, Gonchar V Y, Chechkin A V 2008 Physica A 387 6693

    [33]

    Ai B Q, He Y F 2010 J. Chem. Phys. 132 094504

    [34]

    Ai B Q, He Y F, Zhong W R 2010 Phys. Rev. E 82 061102

    [35]

    Risau-Gusman S, Ibanez S, Bouzat S 2013 Phys. Rev. E 87 022105

    [36]

    Ai B Q, Shao Z G, Zhong W R 2012 J. Chem. Phys. 137 174101

    [37]

    Zhou X W, Lin L F, Ma H, Luo M K 2014 Acta Phys. Sin. 63 110501 (in Chinese) [周兴旺, 林丽烽, 马洪, 罗懋康 2014 63 110501]

    [38]

    Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 63 120503]

    [39]

    Podlubny I 1999 Fractional Differential Equations (San Diegop: Academic Press)

    [40]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) (in Chinese) [郑志刚2004耦合非线性系统的时空动力学与合作行为(北京: 高等教育出版社)]

    [41]

    Petras I 2011 Fractional-Order Nonlinear Systerms Modeling, Analysis and Simulation (1st Ed. ) (Beijing: Higher Education Press) p19

  • [1]

    Reimann P 2002 Phys. Rep. 361 57

    [2]

    Jung P, Kissner J G, Hanggi P 1996 Phys. Rev. Lett. 76 3436

    [3]

    Astumian R D 1997 Science 276 917

    [4]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [5]

    Tu Z C 2012 Chin. Phys. B 21 020513

    [6]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [7]

    Falo F, Martinez P J, Mazo J J, Cilla S 1999 Europhys. Lett. 45 700

    [8]

    Csahók Z, Family F, Vicsek T 1997 Phys. Rev. E 55 5179

    [9]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [10]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [11]

    Zheng Z G, Li X W 2001 Commun. Theor. Phys. 36 151

    [12]

    Parrondo J M R, de Cisneros B J 2002 Appl. Phys. A 75 179

    [13]

    Hanggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [14]

    Reguera D, Rubi J M 2001 Phys. Rev. E 64 061106

    [15]

    Reguera D, Schmid G, Burada P S, Rubi J M, Reimann P, Hanggi P 2006 Phys. Rev. Lett. 96 130603

    [16]

    Martens S, Schmid G, Schimansky-Geier L, Hanggi P 2011 Phys. Rev. E 83 051135

    [17]

    Malgaretti P, Pagonabarraga I, Rubi J M 2013 J. Chem. Phys. 138 194906

    [18]

    Liu J L, He J Z 2010 Chin. Phys. B 19 030504

    [19]

    Zeng C H, Wang H, Wang H T 2011 Chin. Phys. B 20 050502

    [20]

    Ai B Q, Wu J C 2013 J. Chem. Phys. 139 034114

    [21]

    Flach S, Yevtushenko O, Zolotaryuk Y 2000 Phys. Rev. Lett. 84 11

    [22]

    Quintero N R, Jose A, Cuesta J A, Alvarez-Nodarse R 2010 Phys. Rev. E 81 030102

    [23]

    Savel'ev S, Marchesoni F, Hanggi P, Nori F 2004 Europhys. Lett. 67 179

    [24]

    Borromeo M, Marchesoni F 2006 Phys. Rev. E 73 016142

    [25]

    Machura L, Kostur M, Luczka J 2010 Chem. Phys. 375 445

    [26]

    Brown M, Renzoni F 2008 Phys. Rev. A 77 033405

    [27]

    Chen W, Sun H G, Li X C 2010 Fractional Derivative Modeling of Mechanical and Engineering Problems (Beijing: Science Press) p125 (in Chinese) [陈文, 孙洪广, 李西成 2010 机械和工程问题的分数阶导数模型 (北京: 科学出版社)第125页]

    [28]

    Hilfer R 2003 Applications of Fractional Calculus in Physics (Singapore: World Scientific)

    [29]

    Torvik P J, Bagley R L 1984 J. Appl. Mech. 51 294

    [30]

    Gao S L, Zhong S C, Wei K, Ma H 2012 Acta Phys. Sin. 61 100502 (in Chinese) [高仕龙, 钟苏川, 韦鹍, 马洪 2012 61 100502]

    [31]

    Shen S J, Liu F W 2004 J. Xiamen Univ. (Nat. Sci.) 43 306 (in Chinese) [沈淑君, 刘发旺2004 厦门大学学报 (自然科学版) 43 306]

    [32]

    del-Castillo-Negrete D, Gonchar V Y, Chechkin A V 2008 Physica A 387 6693

    [33]

    Ai B Q, He Y F 2010 J. Chem. Phys. 132 094504

    [34]

    Ai B Q, He Y F, Zhong W R 2010 Phys. Rev. E 82 061102

    [35]

    Risau-Gusman S, Ibanez S, Bouzat S 2013 Phys. Rev. E 87 022105

    [36]

    Ai B Q, Shao Z G, Zhong W R 2012 J. Chem. Phys. 137 174101

    [37]

    Zhou X W, Lin L F, Ma H, Luo M K 2014 Acta Phys. Sin. 63 110501 (in Chinese) [周兴旺, 林丽烽, 马洪, 罗懋康 2014 63 110501]

    [38]

    Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 63 120503]

    [39]

    Podlubny I 1999 Fractional Differential Equations (San Diegop: Academic Press)

    [40]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) (in Chinese) [郑志刚2004耦合非线性系统的时空动力学与合作行为(北京: 高等教育出版社)]

    [41]

    Petras I 2011 Fractional-Order Nonlinear Systerms Modeling, Analysis and Simulation (1st Ed. ) (Beijing: Higher Education Press) p19

  • [1] Gao Fei, Hu Dao-Nan, Tong Heng-Qing, Wang Chuan-Mei. Chaotic analysis of fractional Willis delayed aneurysm system. Acta Physica Sinica, 2018, 67(15): 150501. doi: 10.7498/aps.67.20180262
    [2] Hu Chuan, Li Zhi-Jun, Chen Xi-Xi. Dynamics analysis and circuit implementation of fractional-order Chua's system with negative parameters. Acta Physica Sinica, 2017, 66(23): 230502. doi: 10.7498/aps.66.230502
    [3] Tan Cheng, Liang Zhi-Shan, Zhang Ju-Qiu. Non-linear control for the fractional boost converter in pseudo continuous conduction mode. Acta Physica Sinica, 2014, 63(20): 200502. doi: 10.7498/aps.63.200502
    [4] Tan Cheng, Liang Zhi-Shan. Modeling and simulation analysis of fractional-order Boost converter in pseudo-continuous conduction mode. Acta Physica Sinica, 2014, 63(7): 070502. doi: 10.7498/aps.63.070502
    [5] Liu Shi-Da, Fu Zun-Tao, Liu Shi-Kuo. Fractional derivative dynamics of intermittent turbulence. Acta Physica Sinica, 2014, 63(7): 074701. doi: 10.7498/aps.63.074701
    [6] Li Rui, Zhang Guang-Jun, Yao Hong, Zhu Tao, Zhang Zhi-Hao. Generalized dislocated lag projective synchronization of fractional chaotic systems with fully uncertain parameters. Acta Physica Sinica, 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [7] Wang Bin, Wu Chao, Zhu De-Lan. A new double-wing fractional-order chaotic system and its synchronization by sliding mode. Acta Physica Sinica, 2013, 62(23): 230506. doi: 10.7498/aps.62.230506
    [8] Wang Rui, Yang Hong. Fractional order chaotic system control based on feedback and multiple least square support vector machines. Acta Physica Sinica, 2011, 60(7): 070508. doi: 10.7498/aps.60.070508
    [9] Hu Jian-Bing, Zhang Guo-An, Zhao Ling-Dong, Zeng Jin-Quan. Intermittent synchronizing fractional unified chaotic systems. Acta Physica Sinica, 2011, 60(6): 060504. doi: 10.7498/aps.60.060504
    [10] Zhao Ling-Dong, Hu Jian-Bing, Bao Zhi-Hua, Zhang Guo-An, Xu Chen, Zhang Shi-Bing. A finite-time stable theorem about fractional systems and finite-time synchronizing fractional super chaotic Lorenz systems. Acta Physica Sinica, 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [11] Huang Li-Lian, He Shao-Jie. Stability of fractional state space system and its application to fractional order chaotic system. Acta Physica Sinica, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [12] Zhao Ling-Dong, Hu Jian-Bing, Liu Xu-Hui. Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters. Acta Physica Sinica, 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305
    [13] Liu Yong, Xie Yong. Dynamical characteristics of the fractional-order FitzHugh-Nagumo model neuron and its synchronization. Acta Physica Sinica, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [14] Yan Xiao-Mei, Liu Ding. Control of fractional order chaotic system based on least square support vector machines. Acta Physica Sinica, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [15] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. Adaptive synchronization between different fractional hyperchaotic systems with uncertain parameters. Acta Physica Sinica, 2009, 58(3): 1441-1445. doi: 10.7498/aps.58.1441
    [16] Zhang Ruo-Xun, Yang Shi-Ping. Chaos in the fractional-order conjugate Chen system and its circuit emulation. Acta Physica Sinica, 2009, 58(5): 2957-2962. doi: 10.7498/aps.58.2957
    [17] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. A novel stablility theorem for fractional systems and its applying in synchronizing fractional chaotic system based on back-stepping approach. Acta Physica Sinica, 2009, 58(4): 2235-2239. doi: 10.7498/aps.58.2235
    [18] Liu Jian-Ye, Guo Wen-Jun, Zuo Wei, Li Xi-Guo. The equation of state of the isospin asymmetrical nuclear matter. Acta Physica Sinica, 2009, 58(3): 1517-1525. doi: 10.7498/aps.58.1517
    [19] Chen Xiang-Rong, Liu Chong-Xin, Li Yong-Xun. Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system. Acta Physica Sinica, 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453
    [20] Controlling projective synchronization in coupled fractional order chaotic Chen system. Acta Physica Sinica, 2007, 56(12): 6815-6819. doi: 10.7498/aps.56.6815
Metrics
  • Abstract views:  5919
  • PDF Downloads:  483
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2014
  • Accepted Date:  28 July 2014
  • Published Online:  05 December 2014

/

返回文章
返回
Baidu
map