-
Metal-organic frameworks (MOFs) have attracted a great deal of interest from both academia and industry due to their extensive potential applications. The tunable physical properties through the manipulation of composition have led to increasing attention to the exploration of the MOF applications. However, the tunability of physical property of MOF with external mechanical load, which usually steams from actual fabrication and application processes, has been rarely investigated. Here, ab initio (first-principles) density functional theory (DFT) calculations are performed to investigate the mechanical, electrical properties and strain engineering of a typical metal-organic framework, MOF-5. Preliminary calculations by using different pseudopotentials and cut-off energies are performed to verify the adopted critical parameters in subsequent simulations. Both the structural stability of MOF-5 and the effect of applied strain are investigated from an energetic point of view. With the increase of applied strain, the cohesive energy of MOF-5 decreases, inducing the reduction of structural stability. In addition, the variation of cohesive energy of MOF-5 shows an asymmetry under expansive and compressive conditions. By applying strain along different directions, the mechanical properties of MOF-5 are systematically investigated, and mechanical constants including Young's modulus, Poisson ratio and elastic constants are obtained. In addition, by analyzing the band gap of MOF-5, the intrinsic electrical property of MOF-5 is clarified. The band gap of MOF-5 is 3.49 eV, indicating that MOF-5 is a wide bandgap semiconductor, which is represented by the combination effect of both [Zn4O]6+ metal clusters and organic linkers. Analysis on the strain engineering of electrical properties of MOF-5 reveals that the applied strain induces the decrease of band gap of MOF-5, and thus leading to the increase of conductivity. This transition is induced by the decrease of conduction energy-level. Further studies on the variations of PDOS and covalent bond show that the strain engineering of electrical property of MOF-5 intrinsically originates from the variation of covalent bond in the organic linker. The applied strain apparently weakens the covalent bond, and thus inducing the relaxation and redistribution of electrons, which increases the activities of electrons, and finally leads to the overall increase of conductivity of MOF-5. This theoretical study quantitatively clarifies the tunability of electronic band gap of MOF-5 with external strain, and provides a theoretical guidance in the design optimization and property evaluation of gas sensors based on MOF-5.
[1] Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J 2003 Nature 423 705
[2] Kitagawa S, Kitaura R, Noro S 2004 Angew. Chem. Int. Ed. 43 2334
[3] Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J 2006 J. Mater. Chem. 16 626
[4] Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T 2010 Nature Chem. 2 944
[5] Zhong C L, Liu D H, Yang Q Y 2013 Constitutive relation of Metal-organic frameworks and its design (Beijing: Science Press) pp1-12 (in Chinese) [仲崇立, 刘大欢, 阳庆元 2013 金属-有机骨架材料的构效关系及设计(北京:科学出版社) 第 1-12 页]
[6] Jacoby M 2008 Chem. Eng. News 86 13
[7] Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Jeffrey R, Long J R 2012 Chem. Rev. 112 724
[8] Cui Y, Yue Y, Qian G, Chen B 2012 Chem. Rev. 112 1126
[9] Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M 2015 Science 300 1127
[10] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M 2002 Science 295 469
[11] Rowsell J L C, Yaghi O M 2004 Micropor. Mesopor. Mater. 73 3
[12] Li H, Eddaoudi M, O'Keeffe M, Yaghi O M 1999 Nature 402 276
[13] Xiang H, Liu D H, Yang Q Y, Mi J G, Zhong C L 2011 Acta Phys. Sin. 60 093602 (in Chinese) [向辉, 刘大欢, 阳庆元, 密建国, 仲崇立 2011 60 093602]
[14] Sagara T, Klassen J, Ganz E 2004 J. Chem. Phys. 121 12543
[15] Sillar K, Hofmann A, Sauer J 2009 J. Am. Chem. Soc. 131 4143
[16] Schrock K, Schroder F, Heyden M, Fischerb R A, Havenitha M 2008 Phys. Chem. Chem. Phys. 10 4732
[17] Britt D, Tranchemontagne D, Yaghi O M 2008 Proc. Natl. Acad. Sci. U.S.A. 105 11623
[18] Silva C G, Corma A, Garca H 2010 J. Mater. Chem. 20 3141
[19] Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T 2012 Chem. Rev. 112 1105
[20] Ellern I, Venkatasubramanian A, Lee J H, Hesketh P, Stavila V, Robinson A, Allendorf M 2013 Micro Nano Lett. 8 766
[21] Tan J C, Cheetham A K 2011 Chem. Soc. Rev. 40 1059
[22] Bahr D F, Reid J A, Mook W M, Bauer C A, Stumpf R, Skulan A J, Moody N R, Simmons B A, Shindel M M, Allendorf M D 2007 Phys. Rev. B 76 184106
[23] Mattesini M, Soler J M, Yndurain F 2006 Phys. Rev. B 73 094111
[24] Samanta A, Furuta T, Li J 2006 J. Chem. Phys. 125 084714
[25] Zhou W, Yildirim T 2006 Phys. Rev. B 74 180301
[26] Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud K P, Bjorgen M, Zecchina A 2004 Chem. Commun. 20 2300
[27] Alvaro M, Carbonell E, Ferrer B, Llabres i Xamena F X, Garcia H 2007 Chem. Eur. J. 13 5106
[28] Civalleri B, Napoli F, Noel Y, Roetti C, Dovesi R 2006 Cryst. Eng. Comm. 8 364
[29] Lin C K, Zhao D, Gao W Y, Yang Z, Ye J, Xu T, Ge Q, Ma S, Liu D J 2012 Inorg. Chem. 51 9039
-
[1] Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J 2003 Nature 423 705
[2] Kitagawa S, Kitaura R, Noro S 2004 Angew. Chem. Int. Ed. 43 2334
[3] Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J 2006 J. Mater. Chem. 16 626
[4] Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T 2010 Nature Chem. 2 944
[5] Zhong C L, Liu D H, Yang Q Y 2013 Constitutive relation of Metal-organic frameworks and its design (Beijing: Science Press) pp1-12 (in Chinese) [仲崇立, 刘大欢, 阳庆元 2013 金属-有机骨架材料的构效关系及设计(北京:科学出版社) 第 1-12 页]
[6] Jacoby M 2008 Chem. Eng. News 86 13
[7] Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Jeffrey R, Long J R 2012 Chem. Rev. 112 724
[8] Cui Y, Yue Y, Qian G, Chen B 2012 Chem. Rev. 112 1126
[9] Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M 2015 Science 300 1127
[10] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M 2002 Science 295 469
[11] Rowsell J L C, Yaghi O M 2004 Micropor. Mesopor. Mater. 73 3
[12] Li H, Eddaoudi M, O'Keeffe M, Yaghi O M 1999 Nature 402 276
[13] Xiang H, Liu D H, Yang Q Y, Mi J G, Zhong C L 2011 Acta Phys. Sin. 60 093602 (in Chinese) [向辉, 刘大欢, 阳庆元, 密建国, 仲崇立 2011 60 093602]
[14] Sagara T, Klassen J, Ganz E 2004 J. Chem. Phys. 121 12543
[15] Sillar K, Hofmann A, Sauer J 2009 J. Am. Chem. Soc. 131 4143
[16] Schrock K, Schroder F, Heyden M, Fischerb R A, Havenitha M 2008 Phys. Chem. Chem. Phys. 10 4732
[17] Britt D, Tranchemontagne D, Yaghi O M 2008 Proc. Natl. Acad. Sci. U.S.A. 105 11623
[18] Silva C G, Corma A, Garca H 2010 J. Mater. Chem. 20 3141
[19] Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T 2012 Chem. Rev. 112 1105
[20] Ellern I, Venkatasubramanian A, Lee J H, Hesketh P, Stavila V, Robinson A, Allendorf M 2013 Micro Nano Lett. 8 766
[21] Tan J C, Cheetham A K 2011 Chem. Soc. Rev. 40 1059
[22] Bahr D F, Reid J A, Mook W M, Bauer C A, Stumpf R, Skulan A J, Moody N R, Simmons B A, Shindel M M, Allendorf M D 2007 Phys. Rev. B 76 184106
[23] Mattesini M, Soler J M, Yndurain F 2006 Phys. Rev. B 73 094111
[24] Samanta A, Furuta T, Li J 2006 J. Chem. Phys. 125 084714
[25] Zhou W, Yildirim T 2006 Phys. Rev. B 74 180301
[26] Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud K P, Bjorgen M, Zecchina A 2004 Chem. Commun. 20 2300
[27] Alvaro M, Carbonell E, Ferrer B, Llabres i Xamena F X, Garcia H 2007 Chem. Eur. J. 13 5106
[28] Civalleri B, Napoli F, Noel Y, Roetti C, Dovesi R 2006 Cryst. Eng. Comm. 8 364
[29] Lin C K, Zhao D, Gao W Y, Yang Z, Ye J, Xu T, Ge Q, Ma S, Liu D J 2012 Inorg. Chem. 51 9039
Catalog
Metrics
- Abstract views: 7519
- PDF Downloads: 412
- Cited By: 0