-
本文采用基于密度泛函理论的第一性原理平面波超软赝势方法对Ti3(SnxAl1-x)C2(x=0,0.25,0.5,0.75,1)固溶体的晶格结构、结构稳定性、电子结构、力学和热学性质进行了系统的理论研究.研究结果表明:Ti3(SnxAl1-x)C2固溶体具有金属性,都是热力学和力学稳定的脆性材料;Sn原子掺杂能在一定程度上提高材料的力学性能,当Sn原子掺杂浓度为0.75时有最大的体积模量,而掺杂浓度为0.5时有最大剪切模量.此外,Ti3(SnxAl1-x)C2固溶体都具有较高的熔点和德拜温度,其中Ti3AlC2,Ti3(Sn0.25Al0.75)C2和Ti3(Sn0.5Al0.5)C2在室温下的晶格热导率均能达到40 W/(mK)以上,是良好的导热性材料.
-
关键词:
- Ti3(SnxAl1-x)C2固溶体 /
- 力学性质 /
- 热学性质 /
- 第一性原理计算
Available experimental and theoretical studies demonstrate that Ti3AlC2 and Ti3SnC2 compounds exhibit excellent mechanical properties at high temperatures,and thus are rendered a promising candidate of high-temperature structural materials.However,these compounds each have a relatively low hardness,Young's modulus,and poor oxidation resistance compared with other MAX phases.In order to overcome these limits,solid solutions on the M,A and/or X sites of the MAX phase compound are considered as a promising strategy to further improve the mechanical properties. Very recently,the solid solutions of Ti3(SnxAl1-x) C2 have been synthesized.However,no theoretical work has focused on the Ti3(SnxAl1-x) C2 solid solutions so far.Therefore,in this work,we perform first-principles calculation to study the microstructures,phase stabilities,electronic,mechanical and thermal properties of Ti3(SnxAl1-x) C2 solid solutions. Particularly,the effects of Sn concentration (x) on the properties are discussed for the Ti3(SnxAl1-x) C2 solid solutions by varying x from 0 to 1.0 in steps of 0.25.All the present ab initio calculations are carried out based on density-functional theory method as implemented in the Cambridge Serial Total Energy Package (CASTEP) code.The electron-ion interaction is described by Vanderbilt-type ultrasoft pseudo-potential with an exchange-correlation function in the generalized gradient approximation (GGA-PW91).The equilibrium crystal structure is fully optimized by independently modifying lattice parameters and internal atomic coordinates,and we employ the Broyden-Fletcher-Goldfarb-Shanno minimization scheme to minimize the total energy and inter-atomic forces.For the reciprocal-space integration,a Monkhorst-Pack grid of 16164 is used to sample the Brillouin-zones for Ti3AlC2 and Ti3SnC2 compound,and 882 for 221 supercell Ti3(SnxAl1-x) C2(x=0.25-0.75) compounds.The present calculated results of the enthalpy formation energy and mechanical stability criteria indicate that all the Ti3(SnxAl1-x) C2(x=0-1.0) solid solutions are thermodynamic and elastically stable.Moreover,mechanical properties (including bulk modulus B and shear modulus G),the ductile and brittle behavior and the anisotropic factors of Ti3(SnxAl1-x) C2 solid solutions are investigated,and the results indicate that all these compounds are identified as brittle materials and isotropic in nature.On the other hand,the MAX phases are good thermal materials due to their high thermal conductivities varying from 12 to 60 W/(mK) at room temperature.As for the thermal conductivity,it has become one of the most fundamental and important physical properties of the MAX phase material,especially for applications at elevated temperatures.Therefore,the lattice thermal conductivities,the minimum thermal conductivities and temperature dependences of the lattice thermal conductivity of Ti3(SnxAl1-x) C2 solid solutions are studied.Furthermore,Debye temperatures and melting points of the Ti3(SnxAl1-x) C2 compounds are also reported.Present results predict that each of all Ti3(SnxAl1-x) C2 compounds has a relative high Debye temperature and melting point,indicating that each of all Ti3(SnxAl1-x) C2 compounds possesses a rather stiff lattice and good thermal conductivity.-
Keywords:
- Ti3(SnxAl1-x)C2 solid solutions /
- mechanical properties /
- thermal properties /
- first-principles calculation
[1] Nowotny V H 1971 J. Solid State Chem. 5 27
[2] Jeitschko W, Nowotny H, Benesovsky F 1963 Monatsh. Chem. 94 672
[3] Barsoum M W, Radovic M 2011 Annu. Rev. Mater. Res. 41 195
[4] Chen J J, Duan J Z, Zhang X Z, Jiang X, Duan W S 2015 Acta Phys. Sin. 64 238101 (in Chinese)[陈俊俊, 段济正, 张学智, 姜欣, 段文山2015 64 238101]
[5] Yan X Z, Kuang X Y, Mao A J, Kuang F G, Wang Z H, Sheng X W 2013 Acta Phys. Sin. 62 107402 (in Chinese)[颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟2013 62 107402]
[6] Jiao Z Y, Wang T X, Ma S H 2016 J. Alloys Compd. 687 47
[7] Lapauw T, Vanmeensel K, Lambrinou K, Vleugels J 2015 J. Alloys Compd. 631 72
[8] Barsoum M W 2013 MAX Phases:Properties of Machinable Ternary Carbides and Nitrides (Weinheim:John Wiley & Sons) pp15-32
[9] Dhakal C, Aryal S, Sakidja R, Ching W Y 2015 J. Eur. Ceram. Soc. 35 3203
[10] Slack G A 1979 Solid State Phys. 34 1
[11] Liu Q, Cheng X L, Li D H, Wang F 2010 Mater. Rev.:Res. 24 70 (in Chinese)[刘强, 程新路, 李德华, 王峰2010材料导报24 70]
[12] Jiao Z Y, Ma S H, Wang T X 2015 Solid State Sci. 39 97
[13] Pietzka M A, Schuster J C 1994 J. Phase Equilib. 15 392
[14] Tzenow N V, Barsoum M W 2000 J. Am. Ceram. Soc. 83 825
[15] Bai Y L, He X D, Sun Y, Zhu C C, Li M W, Shi L P 2010 Solid State Sci. 12 1220
[16] Dubois S, Cabioc'h T, Chartier P, Gauthier V, Jaouen M 2007 J. Am. Ceram. Soc. 90 2642
[17] Zhou Y C, Chen J X, Wang J Y 2006 Acta Mater. 54 1317
[18] Huang Z Y, Xu H, Zhai H X, Wang Y Z, Zhou Y 2015 Ceram. Int. l 41 3701
[19] Zhang H Z, Wang S Q 2007 Acta Mater. 55 4645
[20] Dubois S, Bei G P, Tromas C, Gauthier-Brunet V, Gadaud P 2010 Int. J. Appl. Ceram. Technol. 7 719
[21] Jiao Z Y, Ma S H, Huang X F 2014 J. Alloys Compd. 583 607
[22] Wang J Y, Zhou Y C 2004 Phys. Rev. B 69 214111
[23] Cover M F, Warschkow O, Bilek M M M, Mckenzie D R 2008 Adv. Eng. Mater. 10 935
[24] Pugh S F 1954 Philos. Mag. 45 823
[25] Pettifor D G 1992 J. Mater. Sci. Technol. 8 345
[26] Finkel P, Barsoum M W, El-Raghy T 2000 J. Appl. Phys. 87 1701
[27] Kanoun M B, Jaouen M 2008 J. Phys. Condens. Matter 20 2905
[28] Kanoun M B, Goumri-Said S, Reshak A H, Merad A E 2010 Solid State Sci. 12 887
[29] Chong X Y, Jiang Y H, Zhou R, Feng J 2014 J. Alloys Compd. 610 684
[30] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[31] Poirier J P 2000 Introduction to the Physics of the Earth's Interior (Cambridge:Cambridge University Press) p264
[32] Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York:Springer) p45
[33] Belomestnykh V N, Tesleva E P 2004 Tech. Phys. 49 1098
[34] Julian C L 1965 Phys. Rev. A 37 128
[35] Du A B, Wan C L, Qu Z X, Pan W 2009 J. Am. Ceram. Soc. 92 2687
[36] Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951
[37] Scabarozi T, Ganguly A, Hettinger J D, Lofland S E, Amini S, Finkel P, El-Raghy T, Barsoum M W 2008 J. Appl. Phys. 104 073713
-
[1] Nowotny V H 1971 J. Solid State Chem. 5 27
[2] Jeitschko W, Nowotny H, Benesovsky F 1963 Monatsh. Chem. 94 672
[3] Barsoum M W, Radovic M 2011 Annu. Rev. Mater. Res. 41 195
[4] Chen J J, Duan J Z, Zhang X Z, Jiang X, Duan W S 2015 Acta Phys. Sin. 64 238101 (in Chinese)[陈俊俊, 段济正, 张学智, 姜欣, 段文山2015 64 238101]
[5] Yan X Z, Kuang X Y, Mao A J, Kuang F G, Wang Z H, Sheng X W 2013 Acta Phys. Sin. 62 107402 (in Chinese)[颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟2013 62 107402]
[6] Jiao Z Y, Wang T X, Ma S H 2016 J. Alloys Compd. 687 47
[7] Lapauw T, Vanmeensel K, Lambrinou K, Vleugels J 2015 J. Alloys Compd. 631 72
[8] Barsoum M W 2013 MAX Phases:Properties of Machinable Ternary Carbides and Nitrides (Weinheim:John Wiley & Sons) pp15-32
[9] Dhakal C, Aryal S, Sakidja R, Ching W Y 2015 J. Eur. Ceram. Soc. 35 3203
[10] Slack G A 1979 Solid State Phys. 34 1
[11] Liu Q, Cheng X L, Li D H, Wang F 2010 Mater. Rev.:Res. 24 70 (in Chinese)[刘强, 程新路, 李德华, 王峰2010材料导报24 70]
[12] Jiao Z Y, Ma S H, Wang T X 2015 Solid State Sci. 39 97
[13] Pietzka M A, Schuster J C 1994 J. Phase Equilib. 15 392
[14] Tzenow N V, Barsoum M W 2000 J. Am. Ceram. Soc. 83 825
[15] Bai Y L, He X D, Sun Y, Zhu C C, Li M W, Shi L P 2010 Solid State Sci. 12 1220
[16] Dubois S, Cabioc'h T, Chartier P, Gauthier V, Jaouen M 2007 J. Am. Ceram. Soc. 90 2642
[17] Zhou Y C, Chen J X, Wang J Y 2006 Acta Mater. 54 1317
[18] Huang Z Y, Xu H, Zhai H X, Wang Y Z, Zhou Y 2015 Ceram. Int. l 41 3701
[19] Zhang H Z, Wang S Q 2007 Acta Mater. 55 4645
[20] Dubois S, Bei G P, Tromas C, Gauthier-Brunet V, Gadaud P 2010 Int. J. Appl. Ceram. Technol. 7 719
[21] Jiao Z Y, Ma S H, Huang X F 2014 J. Alloys Compd. 583 607
[22] Wang J Y, Zhou Y C 2004 Phys. Rev. B 69 214111
[23] Cover M F, Warschkow O, Bilek M M M, Mckenzie D R 2008 Adv. Eng. Mater. 10 935
[24] Pugh S F 1954 Philos. Mag. 45 823
[25] Pettifor D G 1992 J. Mater. Sci. Technol. 8 345
[26] Finkel P, Barsoum M W, El-Raghy T 2000 J. Appl. Phys. 87 1701
[27] Kanoun M B, Jaouen M 2008 J. Phys. Condens. Matter 20 2905
[28] Kanoun M B, Goumri-Said S, Reshak A H, Merad A E 2010 Solid State Sci. 12 887
[29] Chong X Y, Jiang Y H, Zhou R, Feng J 2014 J. Alloys Compd. 610 684
[30] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[31] Poirier J P 2000 Introduction to the Physics of the Earth's Interior (Cambridge:Cambridge University Press) p264
[32] Morelli D T, Slack G A 2006 High Thermal Conductivity Materials (New York:Springer) p45
[33] Belomestnykh V N, Tesleva E P 2004 Tech. Phys. 49 1098
[34] Julian C L 1965 Phys. Rev. A 37 128
[35] Du A B, Wan C L, Qu Z X, Pan W 2009 J. Am. Ceram. Soc. 92 2687
[36] Fine M E, Brown L D, Marcus H L 1984 Scr. Metall. 18 951
[37] Scabarozi T, Ganguly A, Hettinger J D, Lofland S E, Amini S, Finkel P, El-Raghy T, Barsoum M W 2008 J. Appl. Phys. 104 073713
计量
- 文章访问数: 6622
- PDF下载量: 248
- 被引次数: 0