-
Molecular orientation and stacking mode are commonly considered to have vital influence on the optoelectronic performances of organic semiconductor devices via changing the dynamics of charge carriers transferring among the molecules. Highly ordered and homogeneous stacking would allow a fast band transfer mechanism in the phase domain. Therefore the controls of the molecular orientation and the stacking behavior are of great significance for optimizing the device natures. In this work, the modification and control of iron phthalocyanine (FePc) molecular orientation on Si(111) are accomplished with the aid of high steady magnetic field at room temperature. The FePc films are grown in situ by organic molecular beam deposition on the Si(111) substrates under a high magnetic field strength of 8.5 T. The Si(111) substrates are preserved at room temperature and are kept perpendicular to the magnetic field. The influences of magnetic field on the molecular orientations and the morphologies of FePc thin films are investigated by X-ray diffraction, angle dependent near edge X-ray absorption fine structure (NEXAFS), Raman spectroscopy and atomic force microscopy (AFM). In the presence of the external magnetic field, the deposited FePc films each show a higher crystallinity and slightly closer packing in (002) plane than those without magnetic field. The AFM images verifies more ordered and uniform morphologies of the FePc films grown in the magnetic field. NEXAFS and Raman results both reveale a standing-up configuration of FePc molecules on the Si(111) substrate surface. The average tilting angle of the molecules changes from 63.6 to 67.1 when 8.5 T magnetic field is employed. The results demonstrate that the external high magnetic field distinctly enhances the orientation order of FePc molecules on Si(111) surface due to the magnetic-magnetic interactions between the magnetic field and the molecular magnetic moment. This work also demonstrates that external magnetic field is an efficient means to regulate the orientation and stacking behavior of magnetic molecules, which may open a new way to optimize the performances of the organic semiconductor devices.
-
Keywords:
- organic semiconductor /
- molecular orientation /
- organic molecular beam deposition /
- near-edge X-ray absorption fine structure
[1] Hoppe H, Sariciftci N S 2004 J. Mater. Res. 19 1924
[2] Horowitz G 2004 J. Mater. Res. 19 1946
[3] Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nat. Nanotechnol. 2 216
[4] Wang L, Liu L, Chen W, Feng Y P, Wee A T S 2006 J. Am. Chem. Soc. 128 8003
[5] Yu S, Ahmadi S, Sun C H, Schulte K, Pietzsch A, Hennies F, Zuleta M, Gothelid M 2011 J. Phys. Chem. C 115 14969
[6] Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys. Chem. C 115 23922
[7] Chen W, Qi D C, Huang H, Gao X Y, Wee A T S 2011 Adv. Funct. Mater. 21 410
[8] Boamfa M I, Christianen P C M, Engelkamp H, Nolte R J M, Maan J C 2004 Adv. Funct. Mater. 14 261
[9] Ji Z, Xiang Y, Ueda Y 2004 Prog. Org. Coat. 49 180
[10] Sassella A, Baldi I, Borghesi A, Campione M, Miozzo L, Moret M, Papagni A, Salerno A, Tavazzi S, Trabattoni S 2005 J. Phys. Chem. B 109 5150
[11] Kolotovska V, Friedrich M, Zahn D R T, Salvan G 2006 J. Cryst. Growth 291 166
[12] Dey S, Pal A J 2010 Langmuir 26 17139
[13] Tabata K, Sasaki T, Yamamoto Y 2013 Appl. Phys. Lett. 103 043301
[14] Pfeiffer M, Leo K, Zhou X, Huang J S, Hofmann M, Werner A, Blochwitz-Nimoth J 2003 Org. Electron. 4 89
[15] Wang N N, Yu J S, Zang Y, Huang J, Jiang Y D 2010 Sol. Energy Mater. Sol. Cells 94 263
[16] Gu D H, Chen Q Y, Tang X D, Gan F X, Shen S Y, Liu K, Xu H J 1995 Opt. Commun. 121 125
[17] Milev A S, Tran N, Kannangara G S K, Wilson M A, Avramov I 2008 J. Phys. Chem. C 112 5339
[18] Barraclo.Cg, Martin R L, Mitra S, Sherwood R C 1970 J. Chem. Phys. 53 1643
[19] Barraclough C G 1971 J. Chem. Phys. 55 1426
[20] Gregson A K, Martin R L, Mitra S {1976 J. Chem. Soc. Dalton 15 1458
[21] Tunhoo B, Nukeaw J 2009 Mater. Res. Innov. 13 145
[22] Hu W P, Liu Y Q, Zhou S Q, Tao J, Xu D F, Zhu D B 1999 Thin Solid Films 347 299
[23] Szybowicz M, Makowiecki J 2012 J. Mater. Sci. 47 1522
[24] Stohr J, Outka D A 1987 Phys. Rev. B 36 7891
[25] Betti M G, Gargiani P, Frisenda R, Biagi R, Cossaro A, Verdini A, Floreano L, Mariani C 2010 J. Phys. Chem. C 114 21638
[26] Calabrese A, Floreano L, Verdini A, Mariani C, Betti M G 2009 Phys. Rev. B 79 115446
[27] Ahlund J, Nilson K, Schiessling J, Kjeldgaard L, Berner S, Martensson N, Puglia C, Brena B, Nyberg M, Luo Y 2006 J. Chem. Phys. 125 034709
[28] Basova T V, Kolesov B A 2000 J. Struct. Chem. 41 770
[29] Szybowicz M, Bala W, Fabisiak K, Paprocki K, Drozdowski M 2011 J. Mater. Sci. 46 6589
[30] Szybowicz M, Runka T, Drozdowski M, Bala W, Grodzicki A, Piszczek P, Bratkowski A 2004 J. Mol. Struct. 704 107
[31] Basova T V, Kolesov B A 1998 Thin Solid Films 325 140
-
[1] Hoppe H, Sariciftci N S 2004 J. Mater. Res. 19 1924
[2] Horowitz G 2004 J. Mater. Res. 19 1946
[3] Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nat. Nanotechnol. 2 216
[4] Wang L, Liu L, Chen W, Feng Y P, Wee A T S 2006 J. Am. Chem. Soc. 128 8003
[5] Yu S, Ahmadi S, Sun C H, Schulte K, Pietzsch A, Hennies F, Zuleta M, Gothelid M 2011 J. Phys. Chem. C 115 14969
[6] Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys. Chem. C 115 23922
[7] Chen W, Qi D C, Huang H, Gao X Y, Wee A T S 2011 Adv. Funct. Mater. 21 410
[8] Boamfa M I, Christianen P C M, Engelkamp H, Nolte R J M, Maan J C 2004 Adv. Funct. Mater. 14 261
[9] Ji Z, Xiang Y, Ueda Y 2004 Prog. Org. Coat. 49 180
[10] Sassella A, Baldi I, Borghesi A, Campione M, Miozzo L, Moret M, Papagni A, Salerno A, Tavazzi S, Trabattoni S 2005 J. Phys. Chem. B 109 5150
[11] Kolotovska V, Friedrich M, Zahn D R T, Salvan G 2006 J. Cryst. Growth 291 166
[12] Dey S, Pal A J 2010 Langmuir 26 17139
[13] Tabata K, Sasaki T, Yamamoto Y 2013 Appl. Phys. Lett. 103 043301
[14] Pfeiffer M, Leo K, Zhou X, Huang J S, Hofmann M, Werner A, Blochwitz-Nimoth J 2003 Org. Electron. 4 89
[15] Wang N N, Yu J S, Zang Y, Huang J, Jiang Y D 2010 Sol. Energy Mater. Sol. Cells 94 263
[16] Gu D H, Chen Q Y, Tang X D, Gan F X, Shen S Y, Liu K, Xu H J 1995 Opt. Commun. 121 125
[17] Milev A S, Tran N, Kannangara G S K, Wilson M A, Avramov I 2008 J. Phys. Chem. C 112 5339
[18] Barraclo.Cg, Martin R L, Mitra S, Sherwood R C 1970 J. Chem. Phys. 53 1643
[19] Barraclough C G 1971 J. Chem. Phys. 55 1426
[20] Gregson A K, Martin R L, Mitra S {1976 J. Chem. Soc. Dalton 15 1458
[21] Tunhoo B, Nukeaw J 2009 Mater. Res. Innov. 13 145
[22] Hu W P, Liu Y Q, Zhou S Q, Tao J, Xu D F, Zhu D B 1999 Thin Solid Films 347 299
[23] Szybowicz M, Makowiecki J 2012 J. Mater. Sci. 47 1522
[24] Stohr J, Outka D A 1987 Phys. Rev. B 36 7891
[25] Betti M G, Gargiani P, Frisenda R, Biagi R, Cossaro A, Verdini A, Floreano L, Mariani C 2010 J. Phys. Chem. C 114 21638
[26] Calabrese A, Floreano L, Verdini A, Mariani C, Betti M G 2009 Phys. Rev. B 79 115446
[27] Ahlund J, Nilson K, Schiessling J, Kjeldgaard L, Berner S, Martensson N, Puglia C, Brena B, Nyberg M, Luo Y 2006 J. Chem. Phys. 125 034709
[28] Basova T V, Kolesov B A 2000 J. Struct. Chem. 41 770
[29] Szybowicz M, Bala W, Fabisiak K, Paprocki K, Drozdowski M 2011 J. Mater. Sci. 46 6589
[30] Szybowicz M, Runka T, Drozdowski M, Bala W, Grodzicki A, Piszczek P, Bratkowski A 2004 J. Mol. Struct. 704 107
[31] Basova T V, Kolesov B A 1998 Thin Solid Films 325 140
Catalog
Metrics
- Abstract views: 6093
- PDF Downloads: 260
- Cited By: 0