搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多目标多约束优化超冷分子有限转动态取向

于镇洋 洪倩倩 易有根 束传存

引用本文:
Citation:

多目标多约束优化超冷分子有限转动态取向

于镇洋, 洪倩倩, 易有根, 束传存

Multi-Objective and Multi-Constraint Optimization of Ultracold Molecular Orientation with a Limited Number of Rotational States

YU Zhenyang, HONG Qianqian, YI Yougen, SHU Chuancun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 设计整形脉冲场调控分子取向在立体化学反应、强场电离及量子信息处理等领域具有重要的应用价值.然而,传统量子最优控制算法通常在无穷维转动空间中优化分子取向度,且未充分考虑实验设计中脉冲所需满足的约束条件.针对这一问题,本文提出一种多目标多约束量子最优控制算法,用于设计满足脉冲面积和能量约束的脉冲场,以优化超冷分子有限个低位转动态的布居和相位分布,从而得到最大分子取向.研究结果表明,通过调控约束条件,可有效抑制非目标态空间转动态的影响,在目标态空间内获得转动态布居和相位优化的相干叠加态,形成期望的最大分子取向.优化脉冲的时频谱分析结合含时取向度傅里叶变换谱计算表明,获得的最大分子取向主要通过多色脉冲场的爬梯激发实现,且高激发态相干对最大取向度的贡献较小.本文为利用多约束优化算法设计实验可行性脉冲场,通过精准调控有限个转动态产生最大分子取向提供了一种可参考的方法.
    The design of shaped pulse fields for controlling molecular orientation has significant implications for stereochemical reactions, strong-field ionization, and quantum information processing. Traditional quantum optimal control algorithms typically address molecular orientation in an infinite-dimensional rotational space, yet they often overlook the constraints imposed by experimental limitations. In response, we propose a multi-objective and multi-constraint quantum optimal control algorithm aimed at designing pulse fields that adhere to constraints on pulse area and energy. Specifically, the algorithm enforces a zero pulse area condition to eliminate the static field component and maintains constant pulse energy, ensuring compatibility with realistic experimental setups. Under these constraints, the algorithm optimizes the population and phase distribution of a select number of low-lying rotational states in ultracold molecules to achieve maximum molecular orientation. The effectiveness of the proposed algorithm is demonstrated through numerical studies involving two- and three-state target subspaces, where the creation of a coherent superposition state with optimized population and phase distribution leads to the desired molecular orientation. Furthermore, its scalability is validated by application to a more complex 17-state subspace, where a maximum orientation value of 0.99055 is obtained, approaching the global optimal value of 1. Our findings demonstrate that by effectively managing these constraints, the influence of rotational states in the non-target state subspace can be substantially suppressed. A time-frequency analysis of the optimized pulses, coupled with the Fourier transform spectrum of the time-dependent degree of orientation, indicates that maximum molecular orientation is primarily attained through ladder-climbing excitation via multi-color pulse fields, with minimal contributions from highly excited states. This work serves as a valuable reference for designing experimentally feasible pulse fields using multi-constraint optimization algorithms, facilitating precise control over a limited number of rotational states to achieve maximum molecular orientation.
  • [1]

    Leroux I D, Schleier-Smith M H, Vuletić V 2010 Phys. Rev. Lett. 104250801

    [2]

    Luo S, Chen Z, Li X, Hu Z, Ding D 2019 Acta Opt. Sin. 390126007(in Chinese) [罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军2019光学学报390126007]

    [3]

    Lian Z, Luo S, Qi H, Chen Z, Shu C C, Hu Z 2023 Opt. Lett. 48411

    [4]

    Guo Y, Yang C, Xie X, Li Y, Houk K N, Guo X 2025 Sci. Adv. 11 eads0503

    [5]

    Dong B, Pei Y, Mansour N, Lu X, Yang K, Huang W, Fang N 2019 Nat. Commun. 104815

    [6]

    Cai M R, Ye C, Dong H, Li Y 2022 Phys. Rev. Lett. 129103201

    [7]

    Guo Y, Gong X, Ma S, Shu C C 2022 Phys. Rev. A 105013102

    [8]

    Liu Y, Meng J Q, Sun Z, Shu C C 2024 J. Phys. Chem. Lett. 158393

    [9]

    Ploenes L, Straňák P, Mishra A, Liu X, Pérez-Ríos J, Willitsch S 2024 Nat. Chem. 161876

    [10]

    Sawant R, Blackmore J A, Gregory P D, Mur-Petit J, Jaksch D, Aldegunde J, Hutson J M, Tarbutt M R, Cornish S L 2020 New J. Phys. 22013027

    [11]

    Ye J, Zoller P 2024 Phys. Rev. Lett. 132190001

    [12]

    Cornish S L, Tarbutt M R, Hazzard K R 2024 Nat. Phys. 20730

    [13]

    Ding M, Li J S, Deng J, Lee M C, Jolly J, Shahine B, Pawlicki T, Ma C M 2012 J. Chem. Phys. 137265

    [14]

    Tutunnikov I, Gershnabel E, Gold S, Averbukh I S 2018 J. Phys. Chem. Lett. 91105

    [15]

    Milner A A, Fordyce J A, MacPhail-Bartley I, Wasserman W, Milner V, Tutunnikov I, Averbukh I S 2019 Phys. Rev. Lett. 122223201

    [16]

    DeMille D 2002 Phys. Rev. Lett. 88067901

    [17]

    Albert V V, Covey J P, Preskill J 2020 Phys. Rev. X 10031050

    [18]

    Nalewajski R F 2014 J. Math. Chem. 521292

    [19]

    Pickering J D, Shepperson B, Hübschmann B A, Thorning F, Stapelfeldt H 2018 Phys. Rev. Lett. 120113202

    [20]

    Qi D, Cao F, Xu S, Yao Y, He Y, Yao J, Ding P, Jin C, Deng L, Jia T, et al. 2021 Phys. Rev. Appl. 15024051

    [21]

    Loesch H, Remscheid A 1990 J. Chem. Phys. 934779

    [22]

    Friedrich B, Herschbach D 1991 Z. Phys. D 18153

    [23]

    Lemeshko M, Krems R V, Doyle J M, Kais S 2013 Mol. Phys. 1111648

    [24]

    Koch C P, Lemeshko M, Sugny D 2019 Rev. Mod. Phys. 91035005

    [25]

    Nautiyal V V, Devi S, Tyagi A, Vidhani B, Maan A, Prasad V 2021 Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 256119663

    [26]

    Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 2532763

    [27]

    Dion C, Keller A, Atabek O 2001 Eur. Phys. J. D 14249

    [28]

    Machholm M, Henriksen N E 2001 Phys. Rev. Lett. 87193001

    [29]

    Babilotte P, Hamraoui K, Billard F, Hertz E, Lavorel B, Faucher O, Sugny D 2016 Phys. Rev. A 94043403

    [30]

    Shu C C, Yuan K J, Hu W H, Cong S L 2010 J. Chem. Phys. 132244311

    [31]

    Fleischer S, Zhou Y, Field R W, Nelson K A 2011 Phys. Rev. Lett. 107163603

    [32]

    Shu C C, Hong Q Q, Guo Y, Henriksen N E 2020 Phys. Rev. A 102063124

    [33]

    Tutunnikov I, Xu L, Field R W, Nelson K A, Prior Y, Averbukh I S 2021 Phys. Rev. Res. 3013249

    [34]

    De S, Znakovskaya I, Ray D, Anis F, Johnson N G, Bocharova I A, Magrakvelidze M, Esry B D, Cocke C L, Litvinyuk I V, Kling M F 2009 Phys. Rev. Lett. 103153002

    [35]

    Oda K, Hita M, Minemoto S, Sakai H 2010 Phys. Rev. Lett. 104213901

    [36]

    Znakovskaya I, Spanner M, De S, Li H, Ray D, Corkum P, Litvinyuk I V, Cocke C L, Kling M F 2014 Phys. Rev. Lett. 112113005

    [37]

    Ren X, Makhija V, Li H, Kling M F, Kumarappan V 2014 Phys. Rev. A 90013419

    [38]

    Lin K, Tutunnikov I, Qiang J, Ma J, Song Q, Ji Q, Zhang W, Li H, Sun F, Gong X, et al. 2018 Nat. Commun. 95134

    [39]

    Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110023116

    [40]

    Kitano K, Ishii N, Itatani J 2011 Phys. Rev. A 84053408

    [41]

    Shu C C, Henriksen N E 2013 Phys. Rev. A 87013408

    [42]

    Egodapitiya K N, Li S, Jones R R 2014 Phys. Rev. Lett. 112103002

    [43]

    Damari R, Kallush S, Fleischer S 2016 Phys. Rev. Lett. 117103001

    [44]

    Zhang S, Lu C, Jia T, Wang Z, Sun Z 2011 Phys. Rev. A 83043410

    [45]

    Yun H, Kim H T, Kim C M, Nam C H, Lee J 2011 Phys. Rev. A 84065401

    [46]

    Spanner M, Patchkovskii S, Frumker E, Corkum P 2012 Phys. Rev. Lett. 109113001

    [47]

    Qin C C, Jia G R, Zhang X Z, Liu Y F, Long J Y, Zhang B 2013 Chin. Phys. B 23013302

    [48]

    Huang Z Y, Wang D, Lang Z, Li W K, Zhao R R, Leng Y X 2017 Chin. Phys. B 26054209

    [49]

    Mun J H, Sakai H 2018 Phys. Rev. A 98013404

    [50]

    Li H, Li W, Feng Y, Pan H, Zeng H 2013 Phys. Rev. A 88013424

    [51]

    Cheng Q Y, Song Y Z, Meng Q T 2019 Chin. Phys. B 28113301

    [52]

    Damari R, Beer A, Flaxer E, Fleischer S 2023 J. Chem. Phys. 158014201

    [53]

    Kitano K, Ishii N, Kanda N, Matsumoto Y, Kanai T, Kuwata-Gonokami M, Itatani J 2013 Phys. Rev. A 88061405

    [54]

    Kitano K, Ishii N, Kanai T, Itatani J 2014 Phys. Rev. A 90041402

    [55]

    Zhang Y D, Wang S, Zhan W S, Yang J, Jing D 2017 Laser Phys. 27056001

    [56]

    Xu L, Tutunnikov I, Gershnabel E, Prior Y, Averbukh I S 2020 Phys. Rev. Lett. 125013201

    [57]

    Dion C M, Keller A, Atabek O 2005 Phys. Rev. A 72023402

    [58]

    Salomon J, Dion C M, Turinici G 2005 J. Chem. Phys. 123144310

    [59]

    Nakajima K, Abe H, Ohtsuki Y 2012 J. Phys. Chem. A 11611219

    [60]

    Liao S L, Ho T S, Rabitz H, Chu S I 2013 Phys. Rev. A 87013429

    [61]

    Coudert L H 2017 J. Chem. Phys. 146024303

    [62]

    Coudert L 2018 J. Chem. Phys. 148094306

    [63]

    Trippel S, Mullins T, Müller N L M, Kienitz J S, González-Férez R, Küpper J 2015 Phys. Rev. Lett. 114103003

    [64]

    Wang S, Henriksen N E 2020 Phys. Rev. A 102063120

    [65]

    Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104013108

    [66]

    Fan L B, Shu C C, Dong D, He J, Henriksen N E, Nori F 2023 Phys. Rev. Lett. 130043604

    [67]

    Fan L B, Shu C C 2023 J. Phys. A-Math. Theor. 56365302

    [68]

    Zhang J P, Wang S, Henriksen N E 2023 Phys. Rev. A 107033118

    [69]

    Fan L B, Li H J, Chen Q, Zhou H, Liu H, Shu C C 2025 Phys. Rev. A 111033119

    [70]

    Hong Q Q, Dong D, Henriksen N E, Nori F, He J, Shu C C 2025 Phys. Rev. Res. 7 L012049

    [71]

    Werschnik J, Gross E 2007 J. Phys. B: At. Mol. Opt. Phys. 40 R175

    [72]

    Yoshida M, Ohtsuki Y 2014 Phys. Rev. A 90013415

    [73]

    Shu C C, Ho T S, Rabitz H 2016 Phys. Rev. A 93053418

    [74]

    Shu C C, Dong D, Petersen I R, Henriksen N E 2017 Phys. Rev. A 95033809

    [75]

    Guo Y, Dong D, Shu C C 2018 Phys. Chem. Chem. Phys. 209498

    [76]

    Yu H, Ho T S, Rabitz H 2018 Phys. Chem. Chem. Phys. 2013008

    [77]

    Ansel Q, Dionis E, Arrouas F, Peaudecerf B, Guérin S, Guéry-Odelin D, Sugny D 2024 J. Phys. B: At. Mol. Opt. Phys. 57133001

    [78]

    Shtoff A, Rérat M, Gusarov S 2001 Eur. Phys. J. D 15199

  • [1] 蓝湾, 迟晨阳, 郭迎春, 杨玉军, 王兵兵. 外加静电场下CO高次谐波谱.  , doi: 10.7498/aps.72.20230560
    [2] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展.  , doi: 10.7498/aps.72.20230900
    [3] 戴忠华, 周穗华, 张晓兵. 多目标优化的舰船磁场建模方法.  , doi: 10.7498/aps.70.20210334
    [4] 刘天宇, 曹佳慧, 刘艳艳, 高天附, 郑志刚. 温度反馈控制棘轮的最优控制.  , doi: 10.7498/aps.70.20210517
    [5] 潘国兴, 李田, 汤国强, 张发培. 高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究.  , doi: 10.7498/aps.66.156801
    [6] 李冰, 马萌晨, 雷明珠. 粗糙海面与其上方多目标复合散射的混合算法.  , doi: 10.7498/aps.66.050301
    [7] 张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化.  , doi: 10.7498/aps.65.157901
    [8] 张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩/Ni(100)的界面能级结构随薄膜厚度的演化.  , doi: 10.7498/aps.65.047902
    [9] 黄超, 刘凌云, 方军, 张文华, 王凯, 高品, 徐法强. 强磁场对酞菁铁薄膜分子取向及形貌的影响.  , doi: 10.7498/aps.65.156101
    [10] 任新成, 朱小敏, 刘鹏. 大地土壤表面与浅埋多目标宽带复合电磁散射研究.  , doi: 10.7498/aps.65.204101
    [11] 高洪元, 李晨琬. 膜量子蜂群优化的多目标频谱分配.  , doi: 10.7498/aps.63.128802
    [12] 曹小群. 基于高斯伪谱方法的混沌系统最优控制.  , doi: 10.7498/aps.62.230505
    [13] 武利猛, 倪明康. 奇异摄动最优控制问题中的内部层解.  , doi: 10.7498/aps.61.080203
    [14] 朱少平, 钱富才, 刘丁. 不确定动态混沌系统的最优控制.  , doi: 10.7498/aps.59.2250
    [15] 朱樟明, 万达经, 杨银堂. 一种基于多目标约束的互连线宽和线间距优化模型.  , doi: 10.7498/aps.59.4837
    [16] 曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰. 苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究.  , doi: 10.7498/aps.59.1681
    [17] 张国峰, 程峰钰, 贾锁堂, 孙建虎, 肖连团, 张芳. 室温单分子偶极取向与量子化再取向动力学实验研究.  , doi: 10.7498/aps.58.2364
    [18] 杨增强, 周效信. 控制双激光脉冲的宽度提高N2分子的取向.  , doi: 10.7498/aps.57.4099
    [19] 刘 军, 侯延冰, 孙 鑫, 师全民, 李 妍, 靳 辉, 鲁 晶. 电场诱导聚合物分子取向对单线态和三线态激子形成截面的影响.  , doi: 10.7498/aps.56.2845
    [20] 陆明珠, 万明习, 施雨, 宋延淳. 多阵元高强度聚焦超声多目标控制方法研究.  , doi: 10.7498/aps.51.928
计量
  • 文章访问数:  41
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-08

/

返回文章
返回
Baidu
map