-
根据爱因斯坦方程和Marcus电荷传输模型, 使用密度泛函理论B3lyp/6-31g**理论水平计算6 个吐昔烯衍生物分子的结构和电荷传输性质. 结果显示: 6个吐昔烯的衍生物分子的空穴迁移速率为0.018–0.062 cm2·V-1·s-1, 电子迁移率为0.055–0.070 cm2·V-1·s-1, 其中3, 8, 13-辛烷氧基吐昔烯衍生物分子适合作为双极性传输材料. 三条烷氧基链的吐昔烯衍生物分子上引入三个甲氧基或羟基, 均使空穴和电子传输率降低. 引入给电子基团或共轭性基团可减小吐昔烯衍生物分子的能隙, 达到有机半导体的能隙要求.According to Einstein’s equation and Marcus charge transport model, the structures and charge transport rates of six truxene derivative molecules are calculated using the density functional theory at B3LYP/6-31g** theoretical level. The results show that the hole and electron transport rates of the six truxene derivative molecules are 0.018-0.062 and 0.055-0.070 cm2·V-1·s-1, respectively, and the truxene derivative molecule with 3, 8, 13-three octyloxy chains can be designed into dual polarity transport materials. In truxene derivative molecules with three alkoxy chains, introduction of three methoxyl or hydroxyl group could reduce hole and electron transport rate. The introduction of electron-donating groups or conjugated groups would reduce the energy gap of truxene derivative molecules, which meet the requirements for the organic semiconductor.
-
Keywords:
- truxene derivatives /
- hole transport /
- electron transport /
- organic semiconductor
[1] Schmidt-Mende L, Fechtenkötter A, Mllen K, Moons E, Friend R H, MacKenzie J D 2001 Science 293 1119
[2] Sergeyev S, Pisula W, Geerts Y H 2007 Chem. Soc. Rev. 36 1902
[3] Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M 2007 Angew. Chem. Int. Ed. 46 4832
[4] Feng X, Marcon V, Pisula W, Hansen M R, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Mllen K 2009 Nat. Mater. 8 421
[5] Wang R S, Meng W M, Peng Y Q, Ma C Z, Li R H, Xie H W, Wang Y, Zhao M, Yuan J T 2009 Acta Phys. Sin. 58 7897 (in Chinese) [汪润生, 孟卫民, 彭应全, 马朝柱, 李荣华, 谢宏伟, 王颖, 赵明, 袁建挺 2009 58 7897]
[6] Zhao K Q, Wang B Q, Hu P, Gao C Y, Yuan F J, Li H R 2006 Chin. J. Chem. 24 210
[7] Bai Y F, Zhao K Q, Hu P, Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 60
[8] Ji H, Zhao K Q, Yu W H, Wang B Q, Hu P 2009 Sci. China B: Chem. 52 975
[9] Zhao K Q, Chen C, Monobe H, Hu P, Wang B Q, Shimizu Y 2011 Chem. Commun. 47 6290
[10] Ni H L, Monobe H, Hu P, Wang B Q, Shimizu Y, Zhao K Q 2013 Liquid Crystals 40 411
[11] Lemaur V, Filho D A, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije M G, Craats A M, Senthikumar K, Siebbeles L D A, Warman J M, Bredas J L, Cormil J 2004 J. Am. Chem. Soc. 126 3271
[12] Cornil J, Lemaur V, Calbert J P, Bredas J L 2002 Adv. Mater. 14 726
[13] Duan G H, Gao H Z, Wang L J, Zhang H Y, Ma Y G 2010 Acta Phys. Chim. Sin. 26 2292 (in Chinese) [段桂花, 高洪泽, 王丽娟, 张厚玉, 马於光 2010 物理化学学报 26 2292]
[14] Chen J R, Huang C R, Xu B Y, Li Q, Zhao K Q 2009 Sci. China B: Chem. 52 1192
[15] Sun D G, Ding F J 2008 Acta Chim. Sin. 66 738 (in Chinese) [孙定光, 丁涪江 2008 化学学报 66 738]
[16] Yang Q F, Nie H, Chen Z R, Li Q, Zhao K Q 2012 Acta Phys. Sin. 61 063102 (in Chinese) [杨琼芬, 聂汉, 陈自然, 李权, 赵可清 2012 61 063102]
-
[1] Schmidt-Mende L, Fechtenkötter A, Mllen K, Moons E, Friend R H, MacKenzie J D 2001 Science 293 1119
[2] Sergeyev S, Pisula W, Geerts Y H 2007 Chem. Soc. Rev. 36 1902
[3] Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M 2007 Angew. Chem. Int. Ed. 46 4832
[4] Feng X, Marcon V, Pisula W, Hansen M R, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Mllen K 2009 Nat. Mater. 8 421
[5] Wang R S, Meng W M, Peng Y Q, Ma C Z, Li R H, Xie H W, Wang Y, Zhao M, Yuan J T 2009 Acta Phys. Sin. 58 7897 (in Chinese) [汪润生, 孟卫民, 彭应全, 马朝柱, 李荣华, 谢宏伟, 王颖, 赵明, 袁建挺 2009 58 7897]
[6] Zhao K Q, Wang B Q, Hu P, Gao C Y, Yuan F J, Li H R 2006 Chin. J. Chem. 24 210
[7] Bai Y F, Zhao K Q, Hu P, Wang B Q, Shimizu Y 2009 Mol. Cryst. Liq. Cryst. 509 60
[8] Ji H, Zhao K Q, Yu W H, Wang B Q, Hu P 2009 Sci. China B: Chem. 52 975
[9] Zhao K Q, Chen C, Monobe H, Hu P, Wang B Q, Shimizu Y 2011 Chem. Commun. 47 6290
[10] Ni H L, Monobe H, Hu P, Wang B Q, Shimizu Y, Zhao K Q 2013 Liquid Crystals 40 411
[11] Lemaur V, Filho D A, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije M G, Craats A M, Senthikumar K, Siebbeles L D A, Warman J M, Bredas J L, Cormil J 2004 J. Am. Chem. Soc. 126 3271
[12] Cornil J, Lemaur V, Calbert J P, Bredas J L 2002 Adv. Mater. 14 726
[13] Duan G H, Gao H Z, Wang L J, Zhang H Y, Ma Y G 2010 Acta Phys. Chim. Sin. 26 2292 (in Chinese) [段桂花, 高洪泽, 王丽娟, 张厚玉, 马於光 2010 物理化学学报 26 2292]
[14] Chen J R, Huang C R, Xu B Y, Li Q, Zhao K Q 2009 Sci. China B: Chem. 52 1192
[15] Sun D G, Ding F J 2008 Acta Chim. Sin. 66 738 (in Chinese) [孙定光, 丁涪江 2008 化学学报 66 738]
[16] Yang Q F, Nie H, Chen Z R, Li Q, Zhao K Q 2012 Acta Phys. Sin. 61 063102 (in Chinese) [杨琼芬, 聂汉, 陈自然, 李权, 赵可清 2012 61 063102]
计量
- 文章访问数: 5999
- PDF下载量: 650
- 被引次数: 0