Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adsorption, film growth, and electronic structures of 2,7-dioctyl[1]benzothieno-[3,2-b][1]benzothiophene (C8-BTBT) on Cu (100)

Zhang Yu-He Niu Dong-Mei Lü Lu Xie Hai-Peng Zhu Meng-Long Zhang Hong Liu Peng Cao Ning-Tong Gao Yong-Li

Citation:

Adsorption, film growth, and electronic structures of 2,7-dioctyl[1]benzothieno-[3,2-b][1]benzothiophene (C8-BTBT) on Cu (100)

Zhang Yu-He, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhu Meng-Long, Zhang Hong, Liu Peng, Cao Ning-Tong, Gao Yong-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM), and grazing X-ray diffraction measurement(GIXRD), we systematically investigate the correlations of interface energy level structure, film growth and the molecular orientation of 2, 7-dioctyl[1]benzothieno-[3, 2-b][1]benzothiophene (C8-BTBT) on Cu(100). We find that the adsorption of the first layer of C8-BTBT molecules on Cu(100) is a stable physical one, and there is no chemical shift of the S 2p peaks of XPS and the ratio of the output of C to that of S is the same as the stoichiometric value of the molecular C8-BTBT. The heights of the steps of the upper layers of C8-BTBT in the AFM images are ~ 30 , close to the length of the molecular long c-axis, indicating the standing-up configuration of the upper molecules. AFM image shows that the upper molecules tend to grow into islands while the bottom molecules tend to grow into layer, suggesting an Stranski-Krastanov growth mode of multilayer C8-BTBT on Cu(100). The GIXRD shows an out-of-plane period of 30.21 , which consistently proves the standing-up configuration of the outer molecule layer. There is an electric dipole of 0.41 eV at the very interface pointing from the substrate copper to C8-BTBT, which will reduce the barrier for electron transport and increase the barrier for hole transport from Cu to C8-BTBT. The vacuum level (Evac) starts to bend downward after 16 deposition, and with the increase of the thickness of the film, a total downward shift of 0.42 eV is observed. The downward shift is ascribed to the changing of molecular orientation from lying down before 16 to standing up after 16 , which establishes an outward-pointing layer of C-H bonds and accordingly forms a dipole layer depressing the surface barrier. The shape and leading edge of the hightest occupied molecular orbit (HOMO) also change with the increase of film thickness. These changes are due to the anisotropy of electron ionization from molecular orbit. The total downward shift of the HOMO is about 0.63 eV. The downward bending of 0.42 eV for Evac and 0.63 eV for HOMO with increasing film thickness lead to a slightly decreasing ionization potential (IP) about 0.1 eV before 32 and then an increasing IP about 0.31 eV, which finally results in a total increase of 0.21 eV for IP. The bending electronic structures facilitate electron transport from interface to surface and hole transport from surface to interface. Our Investigation provides valuable information for relevant device design.
      Corresponding author: Niu Dong-Mei, mayee@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51173205, 11334014) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
    [1]

    Oura K, Katayama M, Zotov A V, Lifshits V G, Saranin A A 2003 Surface Science (Berlin: Springer) pp195-227

    [2]

    Zhou Y S, Peng J, Wang E B, Zhang L J 1998 Transition Met. Chem. 23 125

    [3]

    Klauk H, Zschieschang U, Pflaum J, Halik M 2007 Nature 445 745

    [4]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336

    [5]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [6]

    Tang C W, VanSlyke S A I 1987 Appl. Phys. Lett. 51 913

    [7]

    Yang F, Shtein M, Forrest S R {2005 Nature Mater. 4 37

    [8]

    Jurchescu O D, Baas J, Palstra T T M 2004 Appl. Phys. Lett. 84 3061

    [9]

    Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S 2007 Appl. Phys. Lett. 90 102120

    [10]

    Yamamoto T, Takimiya K 2007 J. Am. Chem. Soc. 129 2224

    [11]

    Koezuka H, Tsumura A, Ando T 1987 Synth. Met. 18 699

    [12]

    Yuan Y B, Giri G, Ayzner A L, Zoombelt A P, Mannsfeld S C B, Chen J H, Nordlund D, Toney M F, Huang J S, Bao Z N 2014 Nat. Commun. 5 3005

    [13]

    Schweicher G, Lemaur V, Niebel C, Ruzi C, Diao Y, Goto O, Lee W Y, Kim Y, Arlin J B, Karpinska J 2015 Adv. Mater. 27 3066

    [14]

    Wang Y F, Zou S F, Gao J H, Zhang H R, Yang C D, Xie H, Fang R R, Li H X, Hu W P 2015 Chem. Commun. 51 11961

    [15]

    Li Y, Liu C, Kumatani A, Darmawan P, Minari T, Tsukagoshi K 2012 Org. Electron. 13 264

    [16]

    Liu C, Minari T, Lu X B, Kumatani A, Takimiya K, Tsukagoshi K 2011 Adv. Mater. 23 435

    [17]

    Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T 2011 Nature 475 364

    [18]

    Chen X L, Lovinger A J, Bao Z N, Sapjeta J 2001 Chem. Mater. 13 1341

    [19]

    Kobayashi N, Hosoi S, Koshitani N, Murakami D, Shirasawa R, Kudo Y, Hobara D 2013 J. Chem. Phys. 139 014707

    [20]

    He D W, Zhang Y H, Wu Q S, Xu R, Nan H Y, Liu J F, Yao J J, Wang Z L, Yuan S J, Li Y, Shi Y, Wang J L, Ni Z H, He L, Miao F, Song F Q, Xu H X, Watanabe K, Taniguchi T, Xu J B, Wang X R 2014 Nat. Commun. 5 5162

    [21]

    Kotsuki K, Tanaka H, Obata S, Stauss S, Terashima K, Saiki K 2014 Appl. Phys. Lett. 104 233306

    [22]

    Zhang H, Niu D M, L L, Xie H P, Zhang Y H, Liu P, Huang H, Gao Y L 2016 Acta Phys. Sin. 65 047902 (in Chinese) [张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立 2016 65 047902]

    [23]

    Hou X L, Gao M B 1997 Acta Phys. -Chim. Sin. 13 1044 (in Chinese) [侯相林, 高荫本 1997 物理化学学报 13 1044]

    [24]

    Zhao L, Chen S, Gao J S, Chen Y {2010 J. Mol. Sci. 26 18 (in Chinese) [赵亮, 陈燕, 高金森, 陈玉 2010 分子科学学报 26 18]

    [25]

    Orita H, Itoh N 2004 Surf. Sci. 550 177

    [26]

    Blakesley J C, Greenham N C 2009 J. Appl. Phys. 106 34507

    [27]

    Lange I, Blakesley J C, Frisch J, Vollmer A, Koch N, Neher D 2011 Phys. Rev. Lett. 106 216402

    [28]

    Nishi T, Kanai K, Ouchi Y, Willis M R, Seki K 2006 Chem. Phys. 325 121

    [29]

    Hecht M 1990 Phys. Rev. B 41 7918

    [30]

    Chen W, Huang H, Chen S, Gao X Y, Wee A T S 2008 J. Phys. Chem. C 112 5036

    [31]

    Wang C G, Irfan I, Turinske A J, Gao Y L 2012 Thin Solid Films 525 64

    [32]

    Chen W, Huang H, Chen, S, Huang Y L, Gao X Y, Wee A T S 2008 Chem. Mater. 20 7017

    [33]

    Yamane H, Yabuuchi Y, Fukagawa H, Kera S, Okudaira K K, Ueno N 2006 J. Appl. Phys. 99 093705

    [34]

    Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F, Geohegan D B 2013 J. Am. Chem. Soc. 135 3680

    [35]

    Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys . Chem. C 115 23922

    [36]

    Milligan P K, Murphy B, Lennon D, Cowie B C C, Kadodwala M {2001 J. Phys. Chem. B 105 140

    [37]

    Richardson N, Campuzano J 1981 Vacuum 31 449

    [38]

    Schoofs G R, Preston R E, Benziger J B 1985 Langmuir 1 313

    [39]

    Hunter C A, Sanders J K M 1990 J. Am. Chem. Soc. 112 5525

    [40]

    Ogi Y, Kohguchi H S, Niu D M, Ohshimo K, Suzuki T 2009 J. Phys. Chem. A 113 14536

    [41]

    Niu D M, Ogi Y, Suzuki Y I, Suzuki T 2011 J. Phys. Chem. A 115 2096

  • [1]

    Oura K, Katayama M, Zotov A V, Lifshits V G, Saranin A A 2003 Surface Science (Berlin: Springer) pp195-227

    [2]

    Zhou Y S, Peng J, Wang E B, Zhang L J 1998 Transition Met. Chem. 23 125

    [3]

    Klauk H, Zschieschang U, Pflaum J, Halik M 2007 Nature 445 745

    [4]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336

    [5]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [6]

    Tang C W, VanSlyke S A I 1987 Appl. Phys. Lett. 51 913

    [7]

    Yang F, Shtein M, Forrest S R {2005 Nature Mater. 4 37

    [8]

    Jurchescu O D, Baas J, Palstra T T M 2004 Appl. Phys. Lett. 84 3061

    [9]

    Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S 2007 Appl. Phys. Lett. 90 102120

    [10]

    Yamamoto T, Takimiya K 2007 J. Am. Chem. Soc. 129 2224

    [11]

    Koezuka H, Tsumura A, Ando T 1987 Synth. Met. 18 699

    [12]

    Yuan Y B, Giri G, Ayzner A L, Zoombelt A P, Mannsfeld S C B, Chen J H, Nordlund D, Toney M F, Huang J S, Bao Z N 2014 Nat. Commun. 5 3005

    [13]

    Schweicher G, Lemaur V, Niebel C, Ruzi C, Diao Y, Goto O, Lee W Y, Kim Y, Arlin J B, Karpinska J 2015 Adv. Mater. 27 3066

    [14]

    Wang Y F, Zou S F, Gao J H, Zhang H R, Yang C D, Xie H, Fang R R, Li H X, Hu W P 2015 Chem. Commun. 51 11961

    [15]

    Li Y, Liu C, Kumatani A, Darmawan P, Minari T, Tsukagoshi K 2012 Org. Electron. 13 264

    [16]

    Liu C, Minari T, Lu X B, Kumatani A, Takimiya K, Tsukagoshi K 2011 Adv. Mater. 23 435

    [17]

    Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T 2011 Nature 475 364

    [18]

    Chen X L, Lovinger A J, Bao Z N, Sapjeta J 2001 Chem. Mater. 13 1341

    [19]

    Kobayashi N, Hosoi S, Koshitani N, Murakami D, Shirasawa R, Kudo Y, Hobara D 2013 J. Chem. Phys. 139 014707

    [20]

    He D W, Zhang Y H, Wu Q S, Xu R, Nan H Y, Liu J F, Yao J J, Wang Z L, Yuan S J, Li Y, Shi Y, Wang J L, Ni Z H, He L, Miao F, Song F Q, Xu H X, Watanabe K, Taniguchi T, Xu J B, Wang X R 2014 Nat. Commun. 5 5162

    [21]

    Kotsuki K, Tanaka H, Obata S, Stauss S, Terashima K, Saiki K 2014 Appl. Phys. Lett. 104 233306

    [22]

    Zhang H, Niu D M, L L, Xie H P, Zhang Y H, Liu P, Huang H, Gao Y L 2016 Acta Phys. Sin. 65 047902 (in Chinese) [张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立 2016 65 047902]

    [23]

    Hou X L, Gao M B 1997 Acta Phys. -Chim. Sin. 13 1044 (in Chinese) [侯相林, 高荫本 1997 物理化学学报 13 1044]

    [24]

    Zhao L, Chen S, Gao J S, Chen Y {2010 J. Mol. Sci. 26 18 (in Chinese) [赵亮, 陈燕, 高金森, 陈玉 2010 分子科学学报 26 18]

    [25]

    Orita H, Itoh N 2004 Surf. Sci. 550 177

    [26]

    Blakesley J C, Greenham N C 2009 J. Appl. Phys. 106 34507

    [27]

    Lange I, Blakesley J C, Frisch J, Vollmer A, Koch N, Neher D 2011 Phys. Rev. Lett. 106 216402

    [28]

    Nishi T, Kanai K, Ouchi Y, Willis M R, Seki K 2006 Chem. Phys. 325 121

    [29]

    Hecht M 1990 Phys. Rev. B 41 7918

    [30]

    Chen W, Huang H, Chen S, Gao X Y, Wee A T S 2008 J. Phys. Chem. C 112 5036

    [31]

    Wang C G, Irfan I, Turinske A J, Gao Y L 2012 Thin Solid Films 525 64

    [32]

    Chen W, Huang H, Chen, S, Huang Y L, Gao X Y, Wee A T S 2008 Chem. Mater. 20 7017

    [33]

    Yamane H, Yabuuchi Y, Fukagawa H, Kera S, Okudaira K K, Ueno N 2006 J. Appl. Phys. 99 093705

    [34]

    Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F, Geohegan D B 2013 J. Am. Chem. Soc. 135 3680

    [35]

    Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys . Chem. C 115 23922

    [36]

    Milligan P K, Murphy B, Lennon D, Cowie B C C, Kadodwala M {2001 J. Phys. Chem. B 105 140

    [37]

    Richardson N, Campuzano J 1981 Vacuum 31 449

    [38]

    Schoofs G R, Preston R E, Benziger J B 1985 Langmuir 1 313

    [39]

    Hunter C A, Sanders J K M 1990 J. Am. Chem. Soc. 112 5525

    [40]

    Ogi Y, Kohguchi H S, Niu D M, Ohshimo K, Suzuki T 2009 J. Phys. Chem. A 113 14536

    [41]

    Niu D M, Ogi Y, Suzuki Y I, Suzuki T 2011 J. Phys. Chem. A 115 2096

  • [1] Deng Xiang-Wen, Wu Li-Yuan, Zhao Rui, Wang Jia-Ou, Zhao Li-Na. Application and prospect of machine learning in photoelectron spectroscopy. Acta Physica Sinica, 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [2] Zhang Chao-Jiang, Xu Hong-Guang, Xu Xi-Ling, Zheng Wei-Jun. Electronic structures, chemical bonds, and stabilities of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters: Anion photoelectron spectroscopy and theoretical calculations. Acta Physica Sinica, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [3] Dong Xiao-Li, Jin Kui, Yuan Jie, Zhou Fang, Zhang Guang-Ming, Zhao Zhong-Xian. New progress of FeSe-based superconducting single crystals and films: Spin nematicity, electronic phase separation, and high critical parameters. Acta Physica Sinica, 2018, 67(20): 207410. doi: 10.7498/aps.67.20181638
    [4] Wu Sheng-Yu, Zhang Yun, Bai Hong-Mei, Liang Jin-Ling. First-principle calculation of electronic structures and absorption spectra of lithium niobate crystals doped with Co and Zn ions. Acta Physica Sinica, 2018, 67(18): 184209. doi: 10.7498/aps.67.20180735
    [5] Pan Guo-Xing, Li Tian, Tang Guo-Qiang, Zhang Fa-Pei. Growth and carrier transport properties of highly oriented films of the semiconducting polymers via solution dip-casting. Acta Physica Sinica, 2017, 66(15): 156801. doi: 10.7498/aps.66.156801
    [6] Zhang Hong, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhang Yu-He, Liu Peng, Huang Han, Gao Yong-Li. Thickness-dependent electronic structure of the interface of 2,7-dioctyl[1]benzothieno[3,2-b][1] benzothiophene/Ni(100). Acta Physica Sinica, 2016, 65(4): 047902. doi: 10.7498/aps.65.047902
    [7] Huang Chao, Liu Ling-Yun, Fang Jun, Zhang Wen-Hua, Wang Kai, Gao Pin, Xu Fa-Qiang. High magnetic field influence on the molecular orientation and the morphology of iron phthalocyanine thin films. Acta Physica Sinica, 2016, 65(15): 156101. doi: 10.7498/aps.65.156101
    [8] Feng Xiao-Jing, Guo Wei, Lu Xing-Qiang, Yao Hong-Bin, Li Yue-Hua. Theoretical investigation of femtosecond-resolved photoelectron spectra of three-level ladder K2 molecules. Acta Physica Sinica, 2015, 64(14): 143303. doi: 10.7498/aps.64.143303
    [9] Chen Xian, Wang Yan-Wu, Wang Xiao-Yan, An Shu-Dong, Wang Xiao-Bo, Zhao Yu-Qing. Effect of titanium ion energy on surface structure during the amorphous titanium dioxide film deposition. Acta Physica Sinica, 2014, 63(24): 246801. doi: 10.7498/aps.63.246801
    [10] Yan Chao, Huang Li-Li, He Xing-Dao. Molecular dynamics simulation of the effect of incident energy on the growth of Au/Au (111) thin film. Acta Physica Sinica, 2014, 63(12): 126801. doi: 10.7498/aps.63.126801
    [11] Zhang Min, Tang Tian-Tian, Zhang Chao-Min. Theoretical study of the influence of femtosecond pump-probe pluse on the photoionization of NaLi molecule. Acta Physica Sinica, 2014, 63(2): 023302. doi: 10.7498/aps.63.023302
    [12] Ren Shu-Yang, Ren Zhong-Ming, Ren Wei-Li. Influence of grain size on the magnetic orientation growth of films prepared by vapor deposition in high magnetic field. Acta Physica Sinica, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [13] Cao Liang, Zhang Wen-Hua, Chen Tie-Xin, Han Yu-Yan, Xu Fa-Qiang, Zhu Jun-Fa, Yan Wen-Sheng, Xu Yang, Wang Feng. The molecular orientation and electronic structure of 3, 4, 9, 10-perylene tetracarboxylic dianhydride grown on Au(111). Acta Physica Sinica, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [14] Wu Hai-Fei, Zhang Han-Jie, Liao Qing, Lu Yun-Hao, Si Jian-Xiao, Li Hai-Yang, Bao Shi-Ning, Wu Hui-Zhen, He Pi-Mo. Mn/PbTe(111) interface behavior studied by photoemission. Acta Physica Sinica, 2009, 58(2): 1310-1315. doi: 10.7498/aps.58.1310
    [15] Zhang Wen-Hua, Mo Xiong, Wang Guo-Dong, Wang Li-Wu, Xu Fa-Qiang, Pan Hai-Bin, Shi Min-Min, Chen Hong-Zheng, Wang Mang. Study of electronic structure of 3, 4, 9, 10-perylenetetracarboxylic bisimidazole/Ag interface by photoemission. Acta Physica Sinica, 2007, 56(8): 4936-4942. doi: 10.7498/aps.56.4936
    [16] Yuan Yong-Bo, Liu Yu-Zhen, Deng Kai-Ming, Yang Jin-Long. Assignment of photoelectron spectra of SiN cluster. Acta Physica Sinica, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [17] Ge Yu-Cheng. A new method for directly measuring frequency and intensity temporal profiles of attosecond XUV pulse simultaneously and completely. Acta Physica Sinica, 2005, 54(6): 2653-2661. doi: 10.7498/aps.54.2653
    [18] Jia Wen-Hong, Wu Hai-Shun. Studies on structures and photoelectron spectroscopy of GamPn and GamP-n clusters. Acta Physica Sinica, 2004, 53(4): 1056-1062. doi: 10.7498/aps.53.1056
    [19] Lv Bin, Lv Ping, Shi Shen-Lei, Zhang Jian-Hua, Tang Jian-Xin, Lou Hui, He Pi-Mo, Bao Shi-Ning. . Acta Physica Sinica, 2002, 51(11): 2644-2648. doi: 10.7498/aps.51.2644
    [20] Cui Da-Fu, Wang Huan-Hua, Dao Shou-Yu, Zhou Yue-Liang, ChenZheng Hao, Yang Guo-Zheng, Liu Feng-Qin, K .Ibrahim, Qian Hai-Jie. . Acta Physica Sinica, 2002, 51(1): 187-191. doi: 10.7498/aps.51.187
Metrics
  • Abstract views:  6856
  • PDF Downloads:  317
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2016
  • Accepted Date:  31 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回
Baidu
map