搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究

吕常伟 王臣菊 顾建兵

引用本文:
Citation:

高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究

吕常伟, 王臣菊, 顾建兵

First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure

Lü Chang-Wei, Wang Chen-Ju, Gu Jian-Bing
PDF
HTML
导出引用
  • 本文采用基于密度泛函理论的第一性原理平面波赝势和局域密度近似方法, 优化了立方和六方氮化硼的几何结构, 系统地研究了零温高压下立方和六方氮化硼的几何结构、力学、电学以及光学性质. 结构与力学性质研究表明: 立方氮化硼的结构更加稳定, 两种结构的氮化硼均表现出一定的脆性, 而六方氮化硼的热稳定性则相对较差; 电学性质研究表明: 立方氮化硼和六方氮化硼均为间接带隙半导体, 且立方氮化硼比六方氮化硼局域性更强; 光学性质结果显示: 立方氮化硼和六方氮化硼对入射光的通过性都很好, 在高能区立方氮化硼对入射光的表现更加敏感. 此外, 还研究了高温高压下立方氮化硼的热力学性质, 并得到其热膨胀系数、热容、德拜温度和格林艾森系数随温度和压力的变化关系. 本文的理论研究阐述了高压下立方氮化硼和六方氮化硼的相关性质, 为今后的实验研究提供了比较可靠的理论依据.
    On the basis of the density functional theory of the first-principles, we employ the plane wave pseudopotential method and local density approximation to optimize the geometrical structure of cubic boron nitride and hexagonal boron nitride; then we study their mechanical properties, electronic structures and optical properties at zero temperature and zero pressure, and the thermodynamic properties at different temperatures and different pressures. By means of geometry optimization, we systematically investigate the elastic constant, bulk modulus, shear modulus, hardness and phonon spectrum for each of cubic boron nitride and hexagonal boron nitride. The results show that both cubic boron nitride and hexagonal boron nitride are structurally stable and brittle materials. Besides, cubic boron nitride is more stable than hexagonal boron nitride and it can be used as a superhard material. However, the thermal stability of hexagonal boron nitride is poor. The research results of electrical properties show that both cubic boron nitride and hexagonal boron nitride are indirect bandgap semiconductors, and the localization of cubic boron nitride is stronger than hexagonal boron nitride. The optical studies show that both cubic boron nitride and hexagonal boron nitride have good passivity to incident light. The c-BN is more sensitive to the incident light in high energy region. Last but not least, the thermodynamic properties of cubic boron nitride at high temperature and high pressure are also investigated. The relationships of thermodynamic expansivity, heat capacity, Debye temperature and Grüneisen parameter of c-BN with temperature and pressure are obtained. And the heat capacity of cubic boron nitride is found to be close to the Dulong-Petit limit at high temperatures. In this paper the relevant properties of cubic boron nitride and hexagonal boron nitride under high pressure are described theoretically, and a relatively reliable theoretical basis is provided for relevant experimental research.
      通信作者: 顾建兵, jianbinggu08@163.com
    • 基金项目: 国家自然科学基金(批准号: 11747062, 11747110)、河南省教育厅科技攻关项目(批准号: 172102210072)和河南省高等院校重点科研项目(批准号: 17A140014)资助的课题.
      Corresponding author: Gu Jian-Bing, jianbinggu08@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11747062, 11747110), the Science and Technology Research Project of the Education Department of Henan Province, China (Grant No. 172102210072), and the Key Research Project of Higher Education Institutions of Henan Province, China (Grant No. 17A140014).
    [1]

    许斌, 时永鹏, 吕美哲, 郭全海 2016 人工晶体学报 45 2198Google Scholar

    Xu B, Shi Y P, Lv M Z, Guo Q H 2016 J. Synthetic Cryst. 45 2198Google Scholar

    [2]

    Pallas A, Larsson K 2014 Mol. Plant-Microbe Interact. 13 1034

    [3]

    Bello I, Chong Y M, Ye Q, Yang Y, He B, Kutsay O, Wang H E, Yan C, Jha S K, Zapien J A, Zhang W J 2012 Vacuum 86 575Google Scholar

    [4]

    Bello I, Chan C Y, Zhang W J, Chong Y M, Leung K M, Lee S T, Lifshitz Y 2005 Diamond Relat. Mater. 14 1154Google Scholar

    [5]

    殷红, 赵艳 2015 超硬材料工程 27 49Google Scholar

    Yin H, Zhao Y 2015 Superhard Mater. Eng. 27 49Google Scholar

    [6]

    Nose K, Yang H S, Yoshida T 2005 Diamond Relat. Mater. 14 1297Google Scholar

    [7]

    Ying J, Zhang X W, Yin Z G, Tan H R, Zhang S G, Fan Y M 2011 J. Appl. Phys. 109 312

    [8]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385Google Scholar

    [9]

    Gong H R, Wang Q, Chen L, Xiong L 2017 J. Phys. Chem. Solids 104 276Google Scholar

    [10]

    Era K, Mishima O, Wada Y, Tanaka J, Yamaoka S 1988 Appl. Phys. Lett. 53 962Google Scholar

    [11]

    Duan X M, Yang Z H, Chen L, Tian Z, Cai D L,Wang Y J, Jia D C, Zhou Y 2016 J. Eur. Ceram. Soc. 36 3725Google Scholar

    [12]

    高世涛, 李斌, 李端, 张长瑞, 刘荣军, 王思青 2018 硅酸盐通报 37 1929

    Gao S T, Li B, Li D, Zhang C R, Liu R J, Wang S Q 2018 Bull. Chin. Ceramic Soc. 37 1929

    [13]

    Ouyang T, Chen Y P, Xie Y E, Yang K K, Bao Z G, Zhong J X 2010 Nanotechnology 21 245701Google Scholar

    [14]

    Lin Z, McNamara A, Liu Y, Moon K, Wong C P 2014 Compos. Sci. Technol. 90 123Google Scholar

    [15]

    Haubner R, Wilhelm M, Weissenbacher R, Lux B 2002 Struct. Bond. 6 1539

    [16]

    刘娟, 胡锐, 范志强, 张振华 2017 66 238501Google Scholar

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 238501Google Scholar

    [17]

    Gao B L, Dang C, Wang Y, Wang B 2018 Chin. J. Lumin. 39 1252Google Scholar

    [18]

    Weng Q H, Wang X B, Wang X, Bando Y, Golberg D 2016 Chem. Soc. Rev. 45 3989Google Scholar

    [19]

    Shayeganfar F, Shahsavari R 2016 Carbon 99 523Google Scholar

    [20]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442Google Scholar

    [21]

    候国华, 姜麟麟 2014 吉林大学学报(信息科学版) 32 284Google Scholar

    Hou G H, Jiang Q L 2014 J. Jilin Univ.: Inf. Sci. Ed. 32 284Google Scholar

    [22]

    Zheng H, Liu M X, Yan H, Yan W, Chu Z D, Bai K K, Dou R F, Zhang Y F, Liu Z F, Nie J C, He L 2013 Phys. Rev. B 87 205405Google Scholar

    [23]

    李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生 2013 62 074201Google Scholar

    Li Y B, Wang X, Dai T G, Yuan G Z, Yang H S 2013 Acta Phys. Sin. 62 074201Google Scholar

    [24]

    王帅 2016 博士学位论文 (兰州: 兰州理工大学)

    Wang S 2016 Ph. D. Dissertation (Lanzhou: Lanzhou University of Technology) (in Chinese)

    [25]

    Lu Z S, Liang Y L, Lv P, Cheng Y J, Yang X W 2017 J. Phys. B: At. Mol. Opt. Phys. 34 522

    [26]

    张宁超, 任娟 2018 四川大学学报(自然科学版) 55 105Google Scholar

    Zhang N C , Ren J 2018 J. Sichuan Univ.:Nat. Sci. Ed. 55 105Google Scholar

    [27]

    贾建峰, 武海顺 2006 物理化学学报 22 1520Google Scholar

    Jia J F, Wu H S 2006 Acta Phys. Chim. Sin. 22 1520Google Scholar

    [28]

    Azevedo S, Kaschny J R, Castilho C M C, Mota F B 2007 Nanotechnology 18 495707Google Scholar

    [29]

    Azevedo S, Kaschny J R, Castilho C M C, Mota F B 2009 Eur. Phys. J. B 67 507Google Scholar

    [30]

    颜平兰, 李金 2016 湘潭大学自然科学学报 38 15Google Scholar

    Yan P L, Li J 2016 Nat. Sci. J. Xiangtan Univ. 38 15Google Scholar

    [31]

    卢浩 2017 硕士学位论文(北京: 北京化工大学)

    Lu H 2017 M. S. Thesis (Beijing: Beijing University of Chemical Technology) (in Chinese)

    [32]

    王宁, 董磊, 李德军 2014 天津师范大学学报 34 34Google Scholar

    Wang N, Dong L, Li D J 2014 J. Tianjin Nor. Univ.: Nat. Sci. Ed. 34 34Google Scholar

    [33]

    Wen B, Zhao J J, Melnikc R, Tian Y 2011 Phys. Chem. Chem. Phys. 13 14565Google Scholar

    [34]

    Jiang X, Zhao J J, Ahuja R 2013 J. Phys.Condens. Matter 25 122204Google Scholar

    [35]

    Fan Q Y, Wei Q, Yan H Y, Zhang M G, Zhang Z X, Zhang J Q, Zhang D Y 2014 Comput. Mater. Sci. 85 80Google Scholar

    [36]

    Ren X Y, Zhao C X, Niu C Y, Wang J Q, Jia Y, Cho J H 2016 Phys. Lett. A 380 3891Google Scholar

    [37]

    Bosak A, Serrano J, Krisch M 2006 Phys. Rev. B 73 041402

    [38]

    Los J H, Kroes J M H, Albe K, Gordillo R M, Katsnelson M I, Fasolino A 2017 Phys. Rev. B 96 184108Google Scholar

    [39]

    Niu C Y, Wang J T 2014 Phys. Lett. A 378 2303Google Scholar

    [40]

    Grimsditch M, Zouboulisa E S, Polian A 1994 J. Appl. Phys. 76 832Google Scholar

    [41]

    张淼 2014 吉林化工学院学报 11 90Google Scholar

    Zhang M 2014 J. Jilin Inst. Chem. Technol. 11 90Google Scholar

    [42]

    Fu Z F, Ma J L, Wei Q, Liu P, Zhou J P, Li X C, Wang B 2018 Chin. J. Phys. 56 423Google Scholar

    [43]

    Zhang Z G, Lu M C, Zhu L, Zhu L L, Li Y D, Zhang M, Li Q 2014 Phys. Lett. A 378 741Google Scholar

    [44]

    Paine R T, Narula C K 1990 Chem. Rev. 90 73Google Scholar

    [45]

    张淑华 2011 重庆工商大学学报 28 301Google Scholar

    Zhang S H 2011 J. Chongqing Technol. Business Univ.: Nat. Sci. Ed. 28 301Google Scholar

    [46]

    肖柳 2010 硕士学位论文(青岛: 中国海洋大学)

    Xiao L 2010 M. S. Thesis (Shandong: Ocean University of China) (in Chinese)

    [47]

    Tiede S, Kloepper J E, Whiting D A, Paus R 1974 Mater. Res. Bull. 9 755Google Scholar

    [48]

    Yang Z J, Tang L, Guo A M, Cheng X L, Zhu Z H, Yang X D 2013 J. Appl. Phys. 114 083506Google Scholar

    [49]

    Yang Z J, Li J, Linghu R F, Gao H, Xiong H N, Xu Z J, Tang L, Jia G Z 2017 Comput. Mater. Sci. 127 251Google Scholar

    [50]

    Korozlu N, Colakoglu K, Deligoz E 2010 Phys. Status Solidi B 247 1214

    [51]

    Gu J B, Wang C J, Cheng Y, Zhang L, Cai L C, Ji G F 2015 Comput. Mater. Sci. 96 72Google Scholar

    [52]

    Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57Google Scholar

    [53]

    Yang Z J, Li J, Linghu R F, Cheng X L, Yang X D 2013 J. Alloys Compd. 551 435Google Scholar

    [54]

    Gao Q He, Xu Z J, Tang L, Zuo X J, Jia G Z, Du A, Linghu R F, Guo Y D, Yang Z J 2016 Comput. Mater. Sci. 118 77Google Scholar

    [55]

    Yang Z J, Li J, Linghu R F, Song X S, Cheng X L, Zhu Z H, Yang X D 2013 Eur. Phys. J. B 86 208Google Scholar

    [56]

    张娟娟 2011硕士学位论文 (呼和浩特: 内蒙古大学)

    Zhang J J 2011 M. S. Thesis (Huhehot: Inner Mongolia University) (in Chinese)

    [57]

    Zhang Y N, Yun J N, Wang K Y, Chen X H, Yang Z, Zhang Y Y, Yan J F, Zhao W 2017 Comput. Mater. Sci. 136 12Google Scholar

    [58]

    Cassabois G, Valvin P, Gil B 2016 Nat. Photonic 11 5274

    [59]

    尹建龙 2011 硕士学位论文(湘潭: 湘潭大学)

    Yin J L 2011 M. S. Thesis (Xiangtan: Xiangtan University) (in Chinese)

    [60]

    Zaoui A, Ferhat M 2001 Phys. Status Solidi B 225 15Google Scholar

    [61]

    Zaoui A, Hassan F E H 2001 J. Phys. Condens. Matter 13 253Google Scholar

    [62]

    Xu Y N, Ching W Y 1991 Phys. Rev. B 44 7787Google Scholar

    [63]

    Beiranvand R, Valedbagi S 2015 Optik 127 1553

    [64]

    Yang Z J, Li J, Linghu R F, Cheng X L, Yang X D 2013 J. Alloys Compd. 574 573Google Scholar

  • 图 1  0 GPa和0 K下c-BN和h-BN的总能量与晶胞体积关系

    Fig. 1.  Relationship between total energy and cell volume of c-BN and h-BN at 0 GPa and 0 K

    图 2  0 K时, 压力对c-BN和h-BN的弹性常数的影响

    Fig. 2.  Effect of pressure on the elastic constants of c-BN and h-BN at 0 K

    图 3  0K和0GPa时c-BN和h-BN的声子谱和声子色散

    Fig. 3.  Phonon spectrum and density of phonon states of c-BN and h-BN at 0 K and 0 GPa

    图 4  温度(a)和压力(b)对c-BN标准元胞体积V/V0的影响

    Fig. 4.  The normalized primitive cell volume V/V0 versus temperature (a) and pressure for the c-BN

    图 5  c-BN比热容CV与压力(a)和温度(b)之间的关系

    Fig. 5.  The heat capacity CV versus temperature and pressure for the c-BN

    图 6  c-BN的热力学膨胀系数α与压力(a)和温度(b)的关系

    Fig. 6.  The thermodynamic expansivity α versus pressure (a) and temperature (b) for the c-BN

    图 7  c-BN的徳拜温度ΘD与压力(a)和温度(b)的关系

    Fig. 7.  The Debye temperature ΘD versus pressure (a) and temperature (b) for the c-BN

    图 8  c-BN的格林艾森系数γ与压力(a)和温度(b)的关系

    Fig. 8.  The Grüneisen parameter γ versus pressure (a) temperature and (b) for the c-BN

    图 9  0 GPa和0 K下c-BN (a)和h-BN (b)的能带结构

    Fig. 9.  Band structures for c-BN (a) and h-BN (b) at 0 GPa and 0 K

    图 10  0 GPa和0 K下c-BN和h-BN的态密度

    Fig. 10.  Density of states for c-BN and h-BN at 0 GPa and 0 K

    图 11  0 K和0 GPa时c-BN和h-BN的复介电函数

    Fig. 11.  Complex dielectric functions of c-BN and h-BN at 0 K and 0 GPa

    图 12  0 K和0 GPa时c-BN和h-BN的吸收系数

    Fig. 12.  Absorption coefficients of c-BN and h-BN at 0 K and 0 GPa

    图 13  0 K和0 GPa时c-BN和h-BN的反射率

    Fig. 13.  Reflectivity of c-BN and h-BN at 0 K and 0 GPa

    图 14  0 K和0 GPa时c-BN和h-BN的折射率和消光系数

    Fig. 14.  Refractive index and extinction coefficient of c-BN and h-BN at 0 K and 0 GPa

    图 15  0 K和0 GPa时c-BN和h-BN的损失函数

    Fig. 15.  Loss function of c-BN and h-BN at 0 K and 0 GPa

    图 16  0 K和0 GPa时c-BN和h-BN的光电导率

    Fig. 16.  Conductivity of c-BN and h-BN at 0 K and 0 GPa

    表 1  c-BN和h-BN 晶胞晶格常数的计算值和实验值[6,3239]

    Table 1.  Calculated and experimental value of lattice constants for c-BN and h-BN cells[6,3239]

    结构晶格常数/Åac
    c-BN实验值3.615
    本文计算值3.576
    其他计算值3.583[6], 3.627[32], 3.589[33], 3.581[34], 3.576[35], 3.583[36]
    h-BN实验值2.504[37]6.661[37]
    本文计算值2.4856.610
    其他计算值2.485[32], 2.489[33], 2.489[36]2.496[38], 2.489[39]6.491[32], 6.561[33], 6.501[36], 6.490[38], 6.501[39]
    下载: 导出CSV

    表 2  0 K和0 GPa时, c-BN和h-BN的弹性常数Cij、德拜温度ΘD和平均声速Vm[35,36,4046]

    Table 2.  Elastic constants, Debye temperature and average sound velocity of c-BN and h-BN at 0 K and 0 GPa[35,36,4046]

    方法C11/GPaC12/GPaC13/GPaC33/GPaC44/GPaΘD/KVm/m·s–1BGEB/Gυ
    c-BN实验值820[40]190[40]480[40]389—407[40]
    本文计值824.43186.37479.761929.9411590.90399.06407.38911.850.980.12
    其他计算823[35]185[35]479[35]1765[35]10783[35]407[35]910[35]0.975[35]0.12[35]
    824[36]193[36]476[36]403[36]404[36]0.998[36]0.12[36]
    820[41]194[41]477[41]375.923[41]409[41]854.81[41]0.97[41]0.12[41]
    815[42]194[42]494[42]1790[42]381[42]398[42]0.957[42]
    820[43]194[43]477[43]
    h-BN实验值811[40]169[40]0[40]32[40]7[40]26—335
    811[44]169[44]0[44]27[44]8[44]
    本文计值925.98212.042.2629.835.95424.942928.86142.8898.85240.981.450.22
    其他计算927[36]223[36]1[36]32[36]7[36]145[36]100[36]1.45[36]0.22[36]
    930[42]218[42]1[42]29[42]7[42]158[42]104[42]1.519[42]
    141[45]98[45]239[45]1.44[45]0.22[45]
    923.48[46]212.23[46]2.56[46]28.08[46]4.06[46]
    下载: 导出CSV

    表 3  0 K时, 压力P对c-BN和h-BN的弹性常数Cij, B, G的影响

    Table 3.  Effect of pressure on the elastic constants of c-BN and h-BN at 0 K

    P/GPaC11/GPaC12/GPaC13/GPaC33/GPaC44/GPaB/GPaG/GPaυ
    c-BN0824.43186.374479.76399.06407.380.119
    5830.11185.83493.23400.59415.800.124
    10889.09226.27527.81447.21437.960.130
    15911.61241.91540.63465.15446.140.137
    20932.97257.00552.40482.33453.610.142
    25954.49272.25563.79499.66460.890.147
    30975.51287.24574.81516.66467.910.152
    35996.42302.42585.82533.75474.820.157
    401017.22596.23317.36550.65481.480.161
    451037.37332.13606.51567.21487.920.166
    501057.25346.87616.50583.66494.150.170
    h-BN0925.98212.042.2629.85.95142.8898.850.219
    51031.35249.815.3563.998.14176.61112.090.228
    101148.41283.4826.06132.7226.16231.48145.440.240
    151200.62306.0139.36160.8434.24256.67158.800.244
    201246.22327.5553.25187.0842.77280.31171.490.246
    251287.16348.4567.73211.7651.53302.83183.490.248
    301320.57372.6282.18236.3760.42324.77194.150.251
    351353.78393.2296.91259.9669.28345.92204.720.253
    401385.71412.37111.71283.3178.45366.65215.300.254
    451414.63431.89126.68306.3787.53386.99225.130.256
    501445.81447.45141.74328.4496.53406.75235.270.258
    下载: 导出CSV

    表 4  c-BN和h-BN的带隙宽度[33,5057]

    Table 4.  Bandgap of c-BN and h-BN[33,5057]

    c-BNh-BN
    Eg/eV实验本文计算其他计算实验本文计算其他计算
    5.38 [56]4.3914.11 [57]5.955 [58]4.0713.378—4.194 [59]
    4.81 [33]4.01 [33]
    4.24 [60]4.07 [62]
    4.67 [61] 4.95[63]
    下载: 导出CSV
    Baidu
  • [1]

    许斌, 时永鹏, 吕美哲, 郭全海 2016 人工晶体学报 45 2198Google Scholar

    Xu B, Shi Y P, Lv M Z, Guo Q H 2016 J. Synthetic Cryst. 45 2198Google Scholar

    [2]

    Pallas A, Larsson K 2014 Mol. Plant-Microbe Interact. 13 1034

    [3]

    Bello I, Chong Y M, Ye Q, Yang Y, He B, Kutsay O, Wang H E, Yan C, Jha S K, Zapien J A, Zhang W J 2012 Vacuum 86 575Google Scholar

    [4]

    Bello I, Chan C Y, Zhang W J, Chong Y M, Leung K M, Lee S T, Lifshitz Y 2005 Diamond Relat. Mater. 14 1154Google Scholar

    [5]

    殷红, 赵艳 2015 超硬材料工程 27 49Google Scholar

    Yin H, Zhao Y 2015 Superhard Mater. Eng. 27 49Google Scholar

    [6]

    Nose K, Yang H S, Yoshida T 2005 Diamond Relat. Mater. 14 1297Google Scholar

    [7]

    Ying J, Zhang X W, Yin Z G, Tan H R, Zhang S G, Fan Y M 2011 J. Appl. Phys. 109 312

    [8]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385Google Scholar

    [9]

    Gong H R, Wang Q, Chen L, Xiong L 2017 J. Phys. Chem. Solids 104 276Google Scholar

    [10]

    Era K, Mishima O, Wada Y, Tanaka J, Yamaoka S 1988 Appl. Phys. Lett. 53 962Google Scholar

    [11]

    Duan X M, Yang Z H, Chen L, Tian Z, Cai D L,Wang Y J, Jia D C, Zhou Y 2016 J. Eur. Ceram. Soc. 36 3725Google Scholar

    [12]

    高世涛, 李斌, 李端, 张长瑞, 刘荣军, 王思青 2018 硅酸盐通报 37 1929

    Gao S T, Li B, Li D, Zhang C R, Liu R J, Wang S Q 2018 Bull. Chin. Ceramic Soc. 37 1929

    [13]

    Ouyang T, Chen Y P, Xie Y E, Yang K K, Bao Z G, Zhong J X 2010 Nanotechnology 21 245701Google Scholar

    [14]

    Lin Z, McNamara A, Liu Y, Moon K, Wong C P 2014 Compos. Sci. Technol. 90 123Google Scholar

    [15]

    Haubner R, Wilhelm M, Weissenbacher R, Lux B 2002 Struct. Bond. 6 1539

    [16]

    刘娟, 胡锐, 范志强, 张振华 2017 66 238501Google Scholar

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 238501Google Scholar

    [17]

    Gao B L, Dang C, Wang Y, Wang B 2018 Chin. J. Lumin. 39 1252Google Scholar

    [18]

    Weng Q H, Wang X B, Wang X, Bando Y, Golberg D 2016 Chem. Soc. Rev. 45 3989Google Scholar

    [19]

    Shayeganfar F, Shahsavari R 2016 Carbon 99 523Google Scholar

    [20]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442Google Scholar

    [21]

    候国华, 姜麟麟 2014 吉林大学学报(信息科学版) 32 284Google Scholar

    Hou G H, Jiang Q L 2014 J. Jilin Univ.: Inf. Sci. Ed. 32 284Google Scholar

    [22]

    Zheng H, Liu M X, Yan H, Yan W, Chu Z D, Bai K K, Dou R F, Zhang Y F, Liu Z F, Nie J C, He L 2013 Phys. Rev. B 87 205405Google Scholar

    [23]

    李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生 2013 62 074201Google Scholar

    Li Y B, Wang X, Dai T G, Yuan G Z, Yang H S 2013 Acta Phys. Sin. 62 074201Google Scholar

    [24]

    王帅 2016 博士学位论文 (兰州: 兰州理工大学)

    Wang S 2016 Ph. D. Dissertation (Lanzhou: Lanzhou University of Technology) (in Chinese)

    [25]

    Lu Z S, Liang Y L, Lv P, Cheng Y J, Yang X W 2017 J. Phys. B: At. Mol. Opt. Phys. 34 522

    [26]

    张宁超, 任娟 2018 四川大学学报(自然科学版) 55 105Google Scholar

    Zhang N C , Ren J 2018 J. Sichuan Univ.:Nat. Sci. Ed. 55 105Google Scholar

    [27]

    贾建峰, 武海顺 2006 物理化学学报 22 1520Google Scholar

    Jia J F, Wu H S 2006 Acta Phys. Chim. Sin. 22 1520Google Scholar

    [28]

    Azevedo S, Kaschny J R, Castilho C M C, Mota F B 2007 Nanotechnology 18 495707Google Scholar

    [29]

    Azevedo S, Kaschny J R, Castilho C M C, Mota F B 2009 Eur. Phys. J. B 67 507Google Scholar

    [30]

    颜平兰, 李金 2016 湘潭大学自然科学学报 38 15Google Scholar

    Yan P L, Li J 2016 Nat. Sci. J. Xiangtan Univ. 38 15Google Scholar

    [31]

    卢浩 2017 硕士学位论文(北京: 北京化工大学)

    Lu H 2017 M. S. Thesis (Beijing: Beijing University of Chemical Technology) (in Chinese)

    [32]

    王宁, 董磊, 李德军 2014 天津师范大学学报 34 34Google Scholar

    Wang N, Dong L, Li D J 2014 J. Tianjin Nor. Univ.: Nat. Sci. Ed. 34 34Google Scholar

    [33]

    Wen B, Zhao J J, Melnikc R, Tian Y 2011 Phys. Chem. Chem. Phys. 13 14565Google Scholar

    [34]

    Jiang X, Zhao J J, Ahuja R 2013 J. Phys.Condens. Matter 25 122204Google Scholar

    [35]

    Fan Q Y, Wei Q, Yan H Y, Zhang M G, Zhang Z X, Zhang J Q, Zhang D Y 2014 Comput. Mater. Sci. 85 80Google Scholar

    [36]

    Ren X Y, Zhao C X, Niu C Y, Wang J Q, Jia Y, Cho J H 2016 Phys. Lett. A 380 3891Google Scholar

    [37]

    Bosak A, Serrano J, Krisch M 2006 Phys. Rev. B 73 041402

    [38]

    Los J H, Kroes J M H, Albe K, Gordillo R M, Katsnelson M I, Fasolino A 2017 Phys. Rev. B 96 184108Google Scholar

    [39]

    Niu C Y, Wang J T 2014 Phys. Lett. A 378 2303Google Scholar

    [40]

    Grimsditch M, Zouboulisa E S, Polian A 1994 J. Appl. Phys. 76 832Google Scholar

    [41]

    张淼 2014 吉林化工学院学报 11 90Google Scholar

    Zhang M 2014 J. Jilin Inst. Chem. Technol. 11 90Google Scholar

    [42]

    Fu Z F, Ma J L, Wei Q, Liu P, Zhou J P, Li X C, Wang B 2018 Chin. J. Phys. 56 423Google Scholar

    [43]

    Zhang Z G, Lu M C, Zhu L, Zhu L L, Li Y D, Zhang M, Li Q 2014 Phys. Lett. A 378 741Google Scholar

    [44]

    Paine R T, Narula C K 1990 Chem. Rev. 90 73Google Scholar

    [45]

    张淑华 2011 重庆工商大学学报 28 301Google Scholar

    Zhang S H 2011 J. Chongqing Technol. Business Univ.: Nat. Sci. Ed. 28 301Google Scholar

    [46]

    肖柳 2010 硕士学位论文(青岛: 中国海洋大学)

    Xiao L 2010 M. S. Thesis (Shandong: Ocean University of China) (in Chinese)

    [47]

    Tiede S, Kloepper J E, Whiting D A, Paus R 1974 Mater. Res. Bull. 9 755Google Scholar

    [48]

    Yang Z J, Tang L, Guo A M, Cheng X L, Zhu Z H, Yang X D 2013 J. Appl. Phys. 114 083506Google Scholar

    [49]

    Yang Z J, Li J, Linghu R F, Gao H, Xiong H N, Xu Z J, Tang L, Jia G Z 2017 Comput. Mater. Sci. 127 251Google Scholar

    [50]

    Korozlu N, Colakoglu K, Deligoz E 2010 Phys. Status Solidi B 247 1214

    [51]

    Gu J B, Wang C J, Cheng Y, Zhang L, Cai L C, Ji G F 2015 Comput. Mater. Sci. 96 72Google Scholar

    [52]

    Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57Google Scholar

    [53]

    Yang Z J, Li J, Linghu R F, Cheng X L, Yang X D 2013 J. Alloys Compd. 551 435Google Scholar

    [54]

    Gao Q He, Xu Z J, Tang L, Zuo X J, Jia G Z, Du A, Linghu R F, Guo Y D, Yang Z J 2016 Comput. Mater. Sci. 118 77Google Scholar

    [55]

    Yang Z J, Li J, Linghu R F, Song X S, Cheng X L, Zhu Z H, Yang X D 2013 Eur. Phys. J. B 86 208Google Scholar

    [56]

    张娟娟 2011硕士学位论文 (呼和浩特: 内蒙古大学)

    Zhang J J 2011 M. S. Thesis (Huhehot: Inner Mongolia University) (in Chinese)

    [57]

    Zhang Y N, Yun J N, Wang K Y, Chen X H, Yang Z, Zhang Y Y, Yan J F, Zhao W 2017 Comput. Mater. Sci. 136 12Google Scholar

    [58]

    Cassabois G, Valvin P, Gil B 2016 Nat. Photonic 11 5274

    [59]

    尹建龙 2011 硕士学位论文(湘潭: 湘潭大学)

    Yin J L 2011 M. S. Thesis (Xiangtan: Xiangtan University) (in Chinese)

    [60]

    Zaoui A, Ferhat M 2001 Phys. Status Solidi B 225 15Google Scholar

    [61]

    Zaoui A, Hassan F E H 2001 J. Phys. Condens. Matter 13 253Google Scholar

    [62]

    Xu Y N, Ching W Y 1991 Phys. Rev. B 44 7787Google Scholar

    [63]

    Beiranvand R, Valedbagi S 2015 Optik 127 1553

    [64]

    Yang Z J, Li J, Linghu R F, Cheng X L, Yang X D 2013 J. Alloys Compd. 574 573Google Scholar

  • [1] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [2] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究.  , 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [3] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究.  , 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [4] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究.  , 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [5] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应.  , 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [6] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算.  , 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [7] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究.  , 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [8] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算.  , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [9] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [10] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [11] 王瑨, 李春梅, 敖靖, 李凤, 陈志谦. IVB族过渡金属氮化物弹性与光学性质研究.  , 2013, 62(8): 087102. doi: 10.7498/aps.62.087102
    [12] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究.  , 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [13] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究.  , 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [14] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究.  , 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [15] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算.  , 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [16] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究.  , 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [17] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质.  , 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [18] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [19] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [20] 王震遐, 李学鹏, 余礼平, 马余刚, 何国伟, 胡岗, 陈一, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长.  , 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
计量
  • 文章访问数:  17309
  • PDF下载量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-15
  • 修回日期:  2019-01-21
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回
Baidu
map