-
本文采用基于密度泛函理论的第一性原理平面波赝势和局域密度近似方法, 优化了立方和六方氮化硼的几何结构, 系统地研究了零温高压下立方和六方氮化硼的几何结构、力学、电学以及光学性质. 结构与力学性质研究表明: 立方氮化硼的结构更加稳定, 两种结构的氮化硼均表现出一定的脆性, 而六方氮化硼的热稳定性则相对较差; 电学性质研究表明: 立方氮化硼和六方氮化硼均为间接带隙半导体, 且立方氮化硼比六方氮化硼局域性更强; 光学性质结果显示: 立方氮化硼和六方氮化硼对入射光的通过性都很好, 在高能区立方氮化硼对入射光的表现更加敏感. 此外, 还研究了高温高压下立方氮化硼的热力学性质, 并得到其热膨胀系数、热容、德拜温度和格林艾森系数随温度和压力的变化关系. 本文的理论研究阐述了高压下立方氮化硼和六方氮化硼的相关性质, 为今后的实验研究提供了比较可靠的理论依据.On the basis of the density functional theory of the first-principles, we employ the plane wave pseudopotential method and local density approximation to optimize the geometrical structure of cubic boron nitride and hexagonal boron nitride; then we study their mechanical properties, electronic structures and optical properties at zero temperature and zero pressure, and the thermodynamic properties at different temperatures and different pressures. By means of geometry optimization, we systematically investigate the elastic constant, bulk modulus, shear modulus, hardness and phonon spectrum for each of cubic boron nitride and hexagonal boron nitride. The results show that both cubic boron nitride and hexagonal boron nitride are structurally stable and brittle materials. Besides, cubic boron nitride is more stable than hexagonal boron nitride and it can be used as a superhard material. However, the thermal stability of hexagonal boron nitride is poor. The research results of electrical properties show that both cubic boron nitride and hexagonal boron nitride are indirect bandgap semiconductors, and the localization of cubic boron nitride is stronger than hexagonal boron nitride. The optical studies show that both cubic boron nitride and hexagonal boron nitride have good passivity to incident light. The c-BN is more sensitive to the incident light in high energy region. Last but not least, the thermodynamic properties of cubic boron nitride at high temperature and high pressure are also investigated. The relationships of thermodynamic expansivity, heat capacity, Debye temperature and Grüneisen parameter of c-BN with temperature and pressure are obtained. And the heat capacity of cubic boron nitride is found to be close to the Dulong-Petit limit at high temperatures. In this paper the relevant properties of cubic boron nitride and hexagonal boron nitride under high pressure are described theoretically, and a relatively reliable theoretical basis is provided for relevant experimental research.
-
Keywords:
- boron nitride /
- electronic properties /
- elastic property /
- optical properties
[1] 许斌, 时永鹏, 吕美哲, 郭全海 2016 人工晶体学报 45 2198Google Scholar
Xu B, Shi Y P, Lv M Z, Guo Q H 2016 J. Synthetic Cryst. 45 2198Google Scholar
[2] Pallas A, Larsson K 2014 Mol. Plant-Microbe Interact. 13 1034
[3] Bello I, Chong Y M, Ye Q, Yang Y, He B, Kutsay O, Wang H E, Yan C, Jha S K, Zapien J A, Zhang W J 2012 Vacuum 86 575Google Scholar
[4] Bello I, Chan C Y, Zhang W J, Chong Y M, Leung K M, Lee S T, Lifshitz Y 2005 Diamond Relat. Mater. 14 1154Google Scholar
[5] 殷红, 赵艳 2015 超硬材料工程 27 49Google Scholar
Yin H, Zhao Y 2015 Superhard Mater. Eng. 27 49Google Scholar
[6] Nose K, Yang H S, Yoshida T 2005 Diamond Relat. Mater. 14 1297Google Scholar
[7] Ying J, Zhang X W, Yin Z G, Tan H R, Zhang S G, Fan Y M 2011 J. Appl. Phys. 109 312
[8] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385Google Scholar
[9] Gong H R, Wang Q, Chen L, Xiong L 2017 J. Phys. Chem. Solids 104 276Google Scholar
[10] Era K, Mishima O, Wada Y, Tanaka J, Yamaoka S 1988 Appl. Phys. Lett. 53 962Google Scholar
[11] Duan X M, Yang Z H, Chen L, Tian Z, Cai D L,Wang Y J, Jia D C, Zhou Y 2016 J. Eur. Ceram. Soc. 36 3725Google Scholar
[12] 高世涛, 李斌, 李端, 张长瑞, 刘荣军, 王思青 2018 硅酸盐通报 37 1929
Gao S T, Li B, Li D, Zhang C R, Liu R J, Wang S Q 2018 Bull. Chin. Ceramic Soc. 37 1929
[13] Ouyang T, Chen Y P, Xie Y E, Yang K K, Bao Z G, Zhong J X 2010 Nanotechnology 21 245701Google Scholar
[14] Lin Z, McNamara A, Liu Y, Moon K, Wong C P 2014 Compos. Sci. Technol. 90 123Google Scholar
[15] Haubner R, Wilhelm M, Weissenbacher R, Lux B 2002 Struct. Bond. 6 1539
[16] 刘娟, 胡锐, 范志强, 张振华 2017 66 238501Google Scholar
Liu J, Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 238501Google Scholar
[17] Gao B L, Dang C, Wang Y, Wang B 2018 Chin. J. Lumin. 39 1252Google Scholar
[18] Weng Q H, Wang X B, Wang X, Bando Y, Golberg D 2016 Chem. Soc. Rev. 45 3989Google Scholar
[19] Shayeganfar F, Shahsavari R 2016 Carbon 99 523Google Scholar
[20] Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442Google Scholar
[21] 候国华, 姜麟麟 2014 吉林大学学报(信息科学版) 32 284Google Scholar
Hou G H, Jiang Q L 2014 J. Jilin Univ.: Inf. Sci. Ed. 32 284Google Scholar
[22] Zheng H, Liu M X, Yan H, Yan W, Chu Z D, Bai K K, Dou R F, Zhang Y F, Liu Z F, Nie J C, He L 2013 Phys. Rev. B 87 205405Google Scholar
[23] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生 2013 62 074201Google Scholar
Li Y B, Wang X, Dai T G, Yuan G Z, Yang H S 2013 Acta Phys. Sin. 62 074201Google Scholar
[24] 王帅 2016 博士学位论文 (兰州: 兰州理工大学)
Wang S 2016 Ph. D. Dissertation (Lanzhou: Lanzhou University of Technology) (in Chinese)
[25] Lu Z S, Liang Y L, Lv P, Cheng Y J, Yang X W 2017 J. Phys. B: At. Mol. Opt. Phys. 34 522
[26] 张宁超, 任娟 2018 四川大学学报(自然科学版) 55 105Google Scholar
Zhang N C , Ren J 2018 J. Sichuan Univ.:Nat. Sci. Ed. 55 105Google Scholar
[27] 贾建峰, 武海顺 2006 物理化学学报 22 1520Google Scholar
Jia J F, Wu H S 2006 Acta Phys. Chim. Sin. 22 1520Google Scholar
[28] Azevedo S, Kaschny J R, Castilho C M C, Mota F B 2007 Nanotechnology 18 495707Google Scholar
[29] Azevedo S, Kaschny J R, Castilho C M C, Mota F B 2009 Eur. Phys. J. B 67 507Google Scholar
[30] 颜平兰, 李金 2016 湘潭大学自然科学学报 38 15Google Scholar
Yan P L, Li J 2016 Nat. Sci. J. Xiangtan Univ. 38 15Google Scholar
[31] 卢浩 2017 硕士学位论文(北京: 北京化工大学)
Lu H 2017 M. S. Thesis (Beijing: Beijing University of Chemical Technology) (in Chinese)
[32] 王宁, 董磊, 李德军 2014 天津师范大学学报 34 34Google Scholar
Wang N, Dong L, Li D J 2014 J. Tianjin Nor. Univ.: Nat. Sci. Ed. 34 34Google Scholar
[33] Wen B, Zhao J J, Melnikc R, Tian Y 2011 Phys. Chem. Chem. Phys. 13 14565Google Scholar
[34] Jiang X, Zhao J J, Ahuja R 2013 J. Phys.Condens. Matter 25 122204Google Scholar
[35] Fan Q Y, Wei Q, Yan H Y, Zhang M G, Zhang Z X, Zhang J Q, Zhang D Y 2014 Comput. Mater. Sci. 85 80Google Scholar
[36] Ren X Y, Zhao C X, Niu C Y, Wang J Q, Jia Y, Cho J H 2016 Phys. Lett. A 380 3891Google Scholar
[37] Bosak A, Serrano J, Krisch M 2006 Phys. Rev. B 73 041402
[38] Los J H, Kroes J M H, Albe K, Gordillo R M, Katsnelson M I, Fasolino A 2017 Phys. Rev. B 96 184108Google Scholar
[39] Niu C Y, Wang J T 2014 Phys. Lett. A 378 2303Google Scholar
[40] Grimsditch M, Zouboulisa E S, Polian A 1994 J. Appl. Phys. 76 832Google Scholar
[41] 张淼 2014 吉林化工学院学报 11 90Google Scholar
Zhang M 2014 J. Jilin Inst. Chem. Technol. 11 90Google Scholar
[42] Fu Z F, Ma J L, Wei Q, Liu P, Zhou J P, Li X C, Wang B 2018 Chin. J. Phys. 56 423Google Scholar
[43] Zhang Z G, Lu M C, Zhu L, Zhu L L, Li Y D, Zhang M, Li Q 2014 Phys. Lett. A 378 741Google Scholar
[44] Paine R T, Narula C K 1990 Chem. Rev. 90 73Google Scholar
[45] 张淑华 2011 重庆工商大学学报 28 301Google Scholar
Zhang S H 2011 J. Chongqing Technol. Business Univ.: Nat. Sci. Ed. 28 301Google Scholar
[46] 肖柳 2010 硕士学位论文(青岛: 中国海洋大学)
Xiao L 2010 M. S. Thesis (Shandong: Ocean University of China) (in Chinese)
[47] Tiede S, Kloepper J E, Whiting D A, Paus R 1974 Mater. Res. Bull. 9 755Google Scholar
[48] Yang Z J, Tang L, Guo A M, Cheng X L, Zhu Z H, Yang X D 2013 J. Appl. Phys. 114 083506Google Scholar
[49] Yang Z J, Li J, Linghu R F, Gao H, Xiong H N, Xu Z J, Tang L, Jia G Z 2017 Comput. Mater. Sci. 127 251Google Scholar
[50] Korozlu N, Colakoglu K, Deligoz E 2010 Phys. Status Solidi B 247 1214
[51] Gu J B, Wang C J, Cheng Y, Zhang L, Cai L C, Ji G F 2015 Comput. Mater. Sci. 96 72Google Scholar
[52] Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57Google Scholar
[53] Yang Z J, Li J, Linghu R F, Cheng X L, Yang X D 2013 J. Alloys Compd. 551 435Google Scholar
[54] Gao Q He, Xu Z J, Tang L, Zuo X J, Jia G Z, Du A, Linghu R F, Guo Y D, Yang Z J 2016 Comput. Mater. Sci. 118 77Google Scholar
[55] Yang Z J, Li J, Linghu R F, Song X S, Cheng X L, Zhu Z H, Yang X D 2013 Eur. Phys. J. B 86 208Google Scholar
[56] 张娟娟 2011硕士学位论文 (呼和浩特: 内蒙古大学)
Zhang J J 2011 M. S. Thesis (Huhehot: Inner Mongolia University) (in Chinese)
[57] Zhang Y N, Yun J N, Wang K Y, Chen X H, Yang Z, Zhang Y Y, Yan J F, Zhao W 2017 Comput. Mater. Sci. 136 12Google Scholar
[58] Cassabois G, Valvin P, Gil B 2016 Nat. Photonic 11 5274
[59] 尹建龙 2011 硕士学位论文(湘潭: 湘潭大学)
Yin J L 2011 M. S. Thesis (Xiangtan: Xiangtan University) (in Chinese)
[60] Zaoui A, Ferhat M 2001 Phys. Status Solidi B 225 15Google Scholar
[61] Zaoui A, Hassan F E H 2001 J. Phys. Condens. Matter 13 253Google Scholar
[62] Xu Y N, Ching W Y 1991 Phys. Rev. B 44 7787Google Scholar
[63] Beiranvand R, Valedbagi S 2015 Optik 127 1553
[64] Yang Z J, Li J, Linghu R F, Cheng X L, Yang X D 2013 J. Alloys Compd. 574 573Google Scholar
-
表 2 0 K和0 GPa时, c-BN和h-BN的弹性常数Cij、德拜温度ΘD和平均声速Vm[35,36,40−46]
Table 2. Elastic constants, Debye temperature and average sound velocity of c-BN and h-BN at 0 K and 0 GPa[35,36,40−46]
方法 C11/GPa C12/GPa C13/GPa C33/GPa C44/GPa ΘD/K Vm/m·s–1 B G E B/G υ c-BN 实验值 820[40] 190[40] 480[40] 389—407[40] 本文计值 824.43 186.37 479.76 1929.94 11590.90 399.06 407.38 911.85 0.98 0.12 其他计算 823[35] 185[35] 479[35] 1765[35] 10783[35] 407[35] 910[35] 0.975[35] 0.12[35] 824[36] 193[36] 476[36] 403[36] 404[36] 0.998[36] 0.12[36] 820[41] 194[41] 477[41] 375.923[41] 409[41] 854.81[41] 0.97[41] 0.12[41] 815[42] 194[42] 494[42] 1790[42] 381[42] 398[42] 0.957[42] 820[43] 194[43] 477[43] h-BN 实验值 811[40] 169[40] 0[40] 32[40] 7[40] 26—335 811[44] 169[44] 0[44] 27[44] 8[44] 本文计值 925.98 212.04 2.26 29.83 5.95 424.94 2928.86 142.88 98.85 240.98 1.45 0.22 其他计算 927[36] 223[36] 1[36] 32[36] 7[36] 145[36] 100[36] 1.45[36] 0.22[36] 930[42] 218[42] 1[42] 29[42] 7[42] 158[42] 104[42] 1.519[42] 141[45] 98[45] 239[45] 1.44[45] 0.22[45] 923.48[46] 212.23[46] 2.56[46] 28.08[46] 4.06[46] 表 3 0 K时, 压力P对c-BN和h-BN的弹性常数Cij, B, G的影响
Table 3. Effect of pressure on the elastic constants of c-BN and h-BN at 0 K
P/GPa C11/GPa C12/GPa C13/GPa C33/GPa C44/GPa B/GPa G/GPa υ c-BN 0 824.43 186.374 479.76 399.06 407.38 0.119 5 830.11 185.83 493.23 400.59 415.80 0.124 10 889.09 226.27 527.81 447.21 437.96 0.130 15 911.61 241.91 540.63 465.15 446.14 0.137 20 932.97 257.00 552.40 482.33 453.61 0.142 25 954.49 272.25 563.79 499.66 460.89 0.147 30 975.51 287.24 574.81 516.66 467.91 0.152 35 996.42 302.42 585.82 533.75 474.82 0.157 40 1017.22 596.23 317.36 550.65 481.48 0.161 45 1037.37 332.13 606.51 567.21 487.92 0.166 50 1057.25 346.87 616.50 583.66 494.15 0.170 h-BN 0 925.98 212.04 2.26 29.8 5.95 142.88 98.85 0.219 5 1031.35 249.81 5.35 63.99 8.14 176.61 112.09 0.228 10 1148.41 283.48 26.06 132.72 26.16 231.48 145.44 0.240 15 1200.62 306.01 39.36 160.84 34.24 256.67 158.80 0.244 20 1246.22 327.55 53.25 187.08 42.77 280.31 171.49 0.246 25 1287.16 348.45 67.73 211.76 51.53 302.83 183.49 0.248 30 1320.57 372.62 82.18 236.37 60.42 324.77 194.15 0.251 35 1353.78 393.22 96.91 259.96 69.28 345.92 204.72 0.253 40 1385.71 412.37 111.71 283.31 78.45 366.65 215.30 0.254 45 1414.63 431.89 126.68 306.37 87.53 386.99 225.13 0.256 50 1445.81 447.45 141.74 328.44 96.53 406.75 235.27 0.258 -
[1] 许斌, 时永鹏, 吕美哲, 郭全海 2016 人工晶体学报 45 2198Google Scholar
Xu B, Shi Y P, Lv M Z, Guo Q H 2016 J. Synthetic Cryst. 45 2198Google Scholar
[2] Pallas A, Larsson K 2014 Mol. Plant-Microbe Interact. 13 1034
[3] Bello I, Chong Y M, Ye Q, Yang Y, He B, Kutsay O, Wang H E, Yan C, Jha S K, Zapien J A, Zhang W J 2012 Vacuum 86 575Google Scholar
[4] Bello I, Chan C Y, Zhang W J, Chong Y M, Leung K M, Lee S T, Lifshitz Y 2005 Diamond Relat. Mater. 14 1154Google Scholar
[5] 殷红, 赵艳 2015 超硬材料工程 27 49Google Scholar
Yin H, Zhao Y 2015 Superhard Mater. Eng. 27 49Google Scholar
[6] Nose K, Yang H S, Yoshida T 2005 Diamond Relat. Mater. 14 1297Google Scholar
[7] Ying J, Zhang X W, Yin Z G, Tan H R, Zhang S G, Fan Y M 2011 J. Appl. Phys. 109 312
[8] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385Google Scholar
[9] Gong H R, Wang Q, Chen L, Xiong L 2017 J. Phys. Chem. Solids 104 276Google Scholar
[10] Era K, Mishima O, Wada Y, Tanaka J, Yamaoka S 1988 Appl. Phys. Lett. 53 962Google Scholar
[11] Duan X M, Yang Z H, Chen L, Tian Z, Cai D L,Wang Y J, Jia D C, Zhou Y 2016 J. Eur. Ceram. Soc. 36 3725Google Scholar
[12] 高世涛, 李斌, 李端, 张长瑞, 刘荣军, 王思青 2018 硅酸盐通报 37 1929
Gao S T, Li B, Li D, Zhang C R, Liu R J, Wang S Q 2018 Bull. Chin. Ceramic Soc. 37 1929
[13] Ouyang T, Chen Y P, Xie Y E, Yang K K, Bao Z G, Zhong J X 2010 Nanotechnology 21 245701Google Scholar
[14] Lin Z, McNamara A, Liu Y, Moon K, Wong C P 2014 Compos. Sci. Technol. 90 123Google Scholar
[15] Haubner R, Wilhelm M, Weissenbacher R, Lux B 2002 Struct. Bond. 6 1539
[16] 刘娟, 胡锐, 范志强, 张振华 2017 66 238501Google Scholar
Liu J, Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 238501Google Scholar
[17] Gao B L, Dang C, Wang Y, Wang B 2018 Chin. J. Lumin. 39 1252Google Scholar
[18] Weng Q H, Wang X B, Wang X, Bando Y, Golberg D 2016 Chem. Soc. Rev. 45 3989Google Scholar
[19] Shayeganfar F, Shahsavari R 2016 Carbon 99 523Google Scholar
[20] Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442Google Scholar
[21] 候国华, 姜麟麟 2014 吉林大学学报(信息科学版) 32 284Google Scholar
Hou G H, Jiang Q L 2014 J. Jilin Univ.: Inf. Sci. Ed. 32 284Google Scholar
[22] Zheng H, Liu M X, Yan H, Yan W, Chu Z D, Bai K K, Dou R F, Zhang Y F, Liu Z F, Nie J C, He L 2013 Phys. Rev. B 87 205405Google Scholar
[23] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生 2013 62 074201Google Scholar
Li Y B, Wang X, Dai T G, Yuan G Z, Yang H S 2013 Acta Phys. Sin. 62 074201Google Scholar
[24] 王帅 2016 博士学位论文 (兰州: 兰州理工大学)
Wang S 2016 Ph. D. Dissertation (Lanzhou: Lanzhou University of Technology) (in Chinese)
[25] Lu Z S, Liang Y L, Lv P, Cheng Y J, Yang X W 2017 J. Phys. B: At. Mol. Opt. Phys. 34 522
[26] 张宁超, 任娟 2018 四川大学学报(自然科学版) 55 105Google Scholar
Zhang N C , Ren J 2018 J. Sichuan Univ.:Nat. Sci. Ed. 55 105Google Scholar
[27] 贾建峰, 武海顺 2006 物理化学学报 22 1520Google Scholar
Jia J F, Wu H S 2006 Acta Phys. Chim. Sin. 22 1520Google Scholar
[28] Azevedo S, Kaschny J R, Castilho C M C, Mota F B 2007 Nanotechnology 18 495707Google Scholar
[29] Azevedo S, Kaschny J R, Castilho C M C, Mota F B 2009 Eur. Phys. J. B 67 507Google Scholar
[30] 颜平兰, 李金 2016 湘潭大学自然科学学报 38 15Google Scholar
Yan P L, Li J 2016 Nat. Sci. J. Xiangtan Univ. 38 15Google Scholar
[31] 卢浩 2017 硕士学位论文(北京: 北京化工大学)
Lu H 2017 M. S. Thesis (Beijing: Beijing University of Chemical Technology) (in Chinese)
[32] 王宁, 董磊, 李德军 2014 天津师范大学学报 34 34Google Scholar
Wang N, Dong L, Li D J 2014 J. Tianjin Nor. Univ.: Nat. Sci. Ed. 34 34Google Scholar
[33] Wen B, Zhao J J, Melnikc R, Tian Y 2011 Phys. Chem. Chem. Phys. 13 14565Google Scholar
[34] Jiang X, Zhao J J, Ahuja R 2013 J. Phys.Condens. Matter 25 122204Google Scholar
[35] Fan Q Y, Wei Q, Yan H Y, Zhang M G, Zhang Z X, Zhang J Q, Zhang D Y 2014 Comput. Mater. Sci. 85 80Google Scholar
[36] Ren X Y, Zhao C X, Niu C Y, Wang J Q, Jia Y, Cho J H 2016 Phys. Lett. A 380 3891Google Scholar
[37] Bosak A, Serrano J, Krisch M 2006 Phys. Rev. B 73 041402
[38] Los J H, Kroes J M H, Albe K, Gordillo R M, Katsnelson M I, Fasolino A 2017 Phys. Rev. B 96 184108Google Scholar
[39] Niu C Y, Wang J T 2014 Phys. Lett. A 378 2303Google Scholar
[40] Grimsditch M, Zouboulisa E S, Polian A 1994 J. Appl. Phys. 76 832Google Scholar
[41] 张淼 2014 吉林化工学院学报 11 90Google Scholar
Zhang M 2014 J. Jilin Inst. Chem. Technol. 11 90Google Scholar
[42] Fu Z F, Ma J L, Wei Q, Liu P, Zhou J P, Li X C, Wang B 2018 Chin. J. Phys. 56 423Google Scholar
[43] Zhang Z G, Lu M C, Zhu L, Zhu L L, Li Y D, Zhang M, Li Q 2014 Phys. Lett. A 378 741Google Scholar
[44] Paine R T, Narula C K 1990 Chem. Rev. 90 73Google Scholar
[45] 张淑华 2011 重庆工商大学学报 28 301Google Scholar
Zhang S H 2011 J. Chongqing Technol. Business Univ.: Nat. Sci. Ed. 28 301Google Scholar
[46] 肖柳 2010 硕士学位论文(青岛: 中国海洋大学)
Xiao L 2010 M. S. Thesis (Shandong: Ocean University of China) (in Chinese)
[47] Tiede S, Kloepper J E, Whiting D A, Paus R 1974 Mater. Res. Bull. 9 755Google Scholar
[48] Yang Z J, Tang L, Guo A M, Cheng X L, Zhu Z H, Yang X D 2013 J. Appl. Phys. 114 083506Google Scholar
[49] Yang Z J, Li J, Linghu R F, Gao H, Xiong H N, Xu Z J, Tang L, Jia G Z 2017 Comput. Mater. Sci. 127 251Google Scholar
[50] Korozlu N, Colakoglu K, Deligoz E 2010 Phys. Status Solidi B 247 1214
[51] Gu J B, Wang C J, Cheng Y, Zhang L, Cai L C, Ji G F 2015 Comput. Mater. Sci. 96 72Google Scholar
[52] Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57Google Scholar
[53] Yang Z J, Li J, Linghu R F, Cheng X L, Yang X D 2013 J. Alloys Compd. 551 435Google Scholar
[54] Gao Q He, Xu Z J, Tang L, Zuo X J, Jia G Z, Du A, Linghu R F, Guo Y D, Yang Z J 2016 Comput. Mater. Sci. 118 77Google Scholar
[55] Yang Z J, Li J, Linghu R F, Song X S, Cheng X L, Zhu Z H, Yang X D 2013 Eur. Phys. J. B 86 208Google Scholar
[56] 张娟娟 2011硕士学位论文 (呼和浩特: 内蒙古大学)
Zhang J J 2011 M. S. Thesis (Huhehot: Inner Mongolia University) (in Chinese)
[57] Zhang Y N, Yun J N, Wang K Y, Chen X H, Yang Z, Zhang Y Y, Yan J F, Zhao W 2017 Comput. Mater. Sci. 136 12Google Scholar
[58] Cassabois G, Valvin P, Gil B 2016 Nat. Photonic 11 5274
[59] 尹建龙 2011 硕士学位论文(湘潭: 湘潭大学)
Yin J L 2011 M. S. Thesis (Xiangtan: Xiangtan University) (in Chinese)
[60] Zaoui A, Ferhat M 2001 Phys. Status Solidi B 225 15Google Scholar
[61] Zaoui A, Hassan F E H 2001 J. Phys. Condens. Matter 13 253Google Scholar
[62] Xu Y N, Ching W Y 1991 Phys. Rev. B 44 7787Google Scholar
[63] Beiranvand R, Valedbagi S 2015 Optik 127 1553
[64] Yang Z J, Li J, Linghu R F, Cheng X L, Yang X D 2013 J. Alloys Compd. 574 573Google Scholar
计量
- 文章访问数: 17309
- PDF下载量: 489
- 被引次数: 0